30 research outputs found

    K_S\rightarrow \gamma\gamma , K_L\rightarrow\pi^0\gamma\gamma$ and Unitarity

    Full text link
    Agreement between the experimental value Γ(KS→γγ)\Gamma (K_S\rightarrow \gamma\gamma) and the number predicted via a one-loop chiral perturbation theory calculation has been cited as a success for the latter. On the other hand the one-loop prediction for the closely related process KL→π0γγK_L\rightarrow \pi^0\gamma\gamma has been found to be a factor three below the experimental value. Using the inputs of unitarity and dispersion relations, we demonstrate the importance of higher order loop effects to both of these processes.Comment: 20 pages (4 figures available on request), UMHEP-39

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice

    Get PDF
    We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1) left ventricular wall thickness was reduced by 12%, 2) left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3) cardiac muscle fiber cross sectional area was decreased by 17%, and 4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output

    Ca 2

    No full text

    High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Get PDF
    We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT) (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s) on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END) and between the two training sets (intermediate, INT). The mRNA expression levels of myosin heavy chain (MHC) isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak) was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance
    corecore