110 research outputs found
Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans
Aims/hypothesis: Extracellular matrix reorganisation is a crucial step of adipocyte differentiation and is controlled by the matrix metalloproteinase-tissue inhibitor of matrix metalloproteinase (TIMP) enzyme system. We therefore sought to define the role of TIMP1 in adipogenesis and to elucidate whether upregulation of TIMP1 in obesity has direct effects on adipocyte formation. Methods: TIMP1 protein levels and mRNA were measured in lean and obese mice with a focus on levels in adipose tissue. We also analysed the effect of recombinant murine TIMP1 on adipogenesis, adipocyte size and metabolic control in vitro and in vivo. Results: TIMP1 levels were increased in the serum and adipose tissue of obese mouse models. Recombinant murine TIMP1 inhibited adipocyte differentiation in 3T3-L1 as well as in subcutaneous primary pre-adipocytes. Conversely, neutralising TIMP1 with a specific antibody enhanced adipocyte differentiation. In vivo, injection of recombinant TIMP1 in mice challenged with a high-fat diet led to enlarged adipocytes. TIMP1-treated mice developed an impaired metabolic profile with increased circulating NEFA levels, hepatic triacylglycerol accumulation and accelerated insulin resistance. Altered glucose clearance in TIMP1-injected mice was due to changes in adipose tissue glucose uptake, whereas muscle glucose clearance remained unaffected. Conclusions/interpretation: TIMP1 is a negative regulator of adipogenesis. In vivo, TIMP1 leads to enlarged adipocytes in the state of overnutrition. This might contribute to the detrimental metabolic consequences seen in TIMP1-injected mice, such as systemic fatty acid overload, hepatic lipid accumulation and insulin resistanc
Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass
The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance
Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network
Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPAR gamma. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 23 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation
Perceval et Parzival. Valeur et fonction de l'épisode dit « des trois gouttes de sang sur la neige » (Hommage à Horst Rüdiger)
Ehlert Trude, Meissburger Gerhard. Perceval et Parzival. Valeur et fonction de l'épisode dit « des trois gouttes de sang sur la neige » (Hommage à Horst Rüdiger). In: Cahiers de civilisation médiévale, 18e année (n°71-72), Juillet-décembre 1975. pp. 197-227
BIG KARL magnet spectrometer Operating System. User's manual
SIGLETIB: RN 5906 (363) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences
Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis.ISSN:1388-1981ISSN:1879-261
- …