325 research outputs found

    Chaotic dynamics of three-dimensional H\'enon maps that originate from a homoclinic bifurcation

    Full text link
    We study bifurcations of a three-dimensional diffeomorphism, g0g_0, that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers (\lambda e^{i\vphi}, \lambda e^{-i\vphi}, \gamma), where 0<λ<1<∣γ∣0<\lambda<1<|\gamma| and ∣λ2γ∣=1|\lambda^2\gamma|=1. We show that in a three-parameter family, g_{\eps}, of diffeomorphisms close to g0g_0, there exist infinitely many open regions near \eps =0 where the corresponding normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional H\'enon-like map. This map possesses, in some parameter regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that this homoclinic bifurcation leads to a strange attractor. We also discuss the place that these three-dimensional H\'enon maps occupy in the class of quadratic volume-preserving diffeomorphisms.Comment: laTeX, 25 pages, 6 eps figure

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τℏ∌(1/ℏ)1/ÎŒ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent ÎŒ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τℏ∌ln⁥(1/ℏ)\tau_{\hbar} \sim \ln(1/\hbar) with respect to ℏ\hbar

    Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps

    Full text link
    We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Melnikov function for a perturbation of a three-dimensional map that has a heteroclinic connection between a pair of invariant circles. The intersection curves of the manifolds are shown to undergo bifurcations in homologyComment: LaTex with 10 eps figure

    Chaotic Advection and the Emergence of Tori in the K\"uppers-Lortz State

    Full text link
    Motivated by the roll-switching behavior observed in rotating Rayleigh-B\'enard convection, we define a K\"uppers-Lortz (K-L) state as a volume-preserving flow with periodic roll switching. For an individual roll state, the Lagrangian particle trajectories are periodic. In a system with roll-switching, the particles can exhibit three-dimensional, chaotic motion. We study a simple phenomenological map that models the Lagrangian dynamics in a K-L state. When the roll axes differ by 120∘120^{\circ} in the plane of rotation, we show that the phase space is dominated by invariant tori if the ratio of switching time to roll turnover time is small. When this parameter approaches zero these tori limit onto the classical hexagonal convection patterns, and, as it gets large, the dynamics becomes fully chaotic and well-mixed. For intermediate values, there are interlinked toroidal and poloidal structures separated by chaotic regions. We also compute the exit time distributions and show that the unbounded chaotic orbits are normally diffusive. Although the map presumes instantaneous switching between roll states, we show that the qualitative features of the flow persist when the model has smooth, overlapping time-dependence for the roll amplitudes (the Busse-Heikes model).Comment: laTeX, 23 pages, 7 figure

    Quantum Poincar\'e Recurrences

    Full text link
    We show that quantum effects modify the decay rate of Poincar\'e recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the universal value p=1 due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.Comment: revtex, 4 pages, 4 figure

    Asymptotic Statistics of Poincar\'e Recurrences in Hamiltonian Systems with Divided Phase Space

    Full text link
    By different methods we show that for dynamical chaos in the standard map with critical golden curve the Poincar\'e recurrences P(\tau) and correlations C(\tau) asymptotically decay in time as P ~ C/\tau ~ 1/\tau^3. It is also explained why this asymptotic behavior starts only at very large times. We argue that the same exponent p=3 should be also valid for a general chaos border.Comment: revtex, 4 pages, 3 ps-figure

    Resonance Zones and Lobe Volumes for Volume-Preserving Maps

    Full text link
    We study exact, volume-preserving diffeomorphisms that have heteroclinic connections between a pair of normally hyperbolic invariant manifolds. We develop a general theory of lobes, showing that the lobe volume is given by an integral of a generating form over the primary intersection, a subset of the heteroclinic orbits. Our definition reproduces the classical action formula in the planar, twist map case. For perturbations from a heteroclinic connection, the lobe volume is shown to reduce, to lowest order, to a suitable integral of a Melnikov function.Comment: ams laTeX, 8 figure

    Ulam method for the Chirikov standard map

    Full text link
    We introduce a generalized Ulam method and apply it to symplectic dynamical maps with a divided phase space. Our extensive numerical studies based on the Arnoldi method show that the Ulam approximant of the Perron-Frobenius operator on a chaotic component converges to a continuous limit. Typically, in this regime the spectrum of relaxation modes is characterized by a power law decay for small relaxation rates. Our numerical data show that the exponent of this decay is approximately equal to the exponent of Poincar\'e recurrences in such systems. The eigenmodes show links with trajectories sticking around stability islands.Comment: 13 pages, 13 figures, high resolution figures available at: http://www.quantware.ups-tlse.fr/QWLIB/ulammethod/ minor corrections in text and fig. 12 and revised discussio
    • 

    corecore