1,771 research outputs found

    Thermal conductivity of the one-dimensional Fermi-Hubbard model

    Get PDF
    We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interactions and moreover, we compute its filling dependence at infinite temperature. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultra-cold quantum gas experiments and for transport measurements with quasi-one dimensional materials

    Full-depth Coadds of the WISE and First-year NEOWISE-Reactivation Images

    Full text link
    The Near Earth Object Wide-field Infrared Survey Explorer (NEOWISE) Reactivation mission released data from its first full year of observations in 2015. This data set includes ~2.5 million exposures in each of W1 and W2, effectively doubling the amount of WISE imaging available at 3.4 and 4.6 microns relative to the AllWISE release. We have created the first ever full-sky set of coadds combining all publicly available W1 and W2 exposures from both the AllWISE and NEOWISE-Reactivation (NEOWISER) mission phases. We employ an adaptation of the unWISE image coaddition framework (Lang 2014), which preserves the native WISE angular resolution and is optimized for forced photometry. By incorporating two additional scans of the entire sky, we not only improve the W1/W2 depths, but also largely eliminate time-dependent artifacts such as off-axis scattered moonlight. We anticipate that our new coadds will have a broad range of applications, including target selection for upcoming spectroscopic cosmology surveys, identification of distant/massive galaxy clusters, and discovery of high-redshift quasars. In particular, our full-depth AllWISE+NEOWISER coadds will be an important input for the Dark Energy Spectroscopic Instrument (DESI) selection of luminous red galaxy and quasar targets. Our full-depth W1/W2 coadds are already in use within the DECam Legacy Survey (DECaLS) and Mayall z-band Legacy Survey (MzLS) reduction pipelines. Much more work still remains in order to fully leverage NEOWISER imaging for astrophysical applications beyond the solar system.Comment: coadds available at http://unwise.me, zoomable full-sky rendering at http://legacysurvey.org/viewe

    The Metallicity of the Monoceros Stream

    Full text link
    We present low-resolution MMT Hectospec spectroscopy of 594 candidate Monoceros stream member stars. Based on strong color-magnitude diagram overdensities, we targeted three fields within the stream's footprint, with 178 deg < l < 203 deg and -25 deg < b < 25 deg. By comparing the measured iron abundances with those expected from smooth Galactic components alone, we measure, for the first time, the spectroscopic metallicity distribution function for Monoceros. We find the stream to be chemically distinct from both the thick disk and halo, with [Fe/H] = -1, and do not detect a trend in the stream's metallicity with Galactic longitude. Passing from b = +25 deg to b = -25 deg the median Monoceros metallicity trends upward by 0.1 dex, though uncertainties in modeling sample contamination by the disk and halo make this a marginal detection. In each field, we find Monoceros to have an intrinsic [Fe/H] dispersion of 0.10-0.22 dex. From the CaII K line, we measure [Ca/Fe] for a subsample of metal poor program stars with -1.1 < [Fe/H] < -0.5. In two of three fields, we find calcium deficiencies qualitatively similar to previously reported [Ti/Fe] underabundances in Monoceros and the Sagittarius tidal stream. Further, using 90 spectra of thick disk stars in the Monoceros pointings with b ~ +/-25 deg, we detect a 0.22 dex north/south metallicity asymmetry coincident with known stellar density asymmetry at R_GC ~ 12 kpc and |Z| ~ 1.7 kpc. Our median Monoceros [Fe/H] = -1.0 and its relatively low dispersion naturally fit the expectation for an appropriately luminous M_V ~ -13 dwarf galaxy progenitor.Comment: accepted for publication in Ap

    Strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux

    Get PDF
    We perform a density-matrix renormalization-group study of strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux. Focusing on one-third filling, we explore the phase diagram in dependence of the magnetic flux and the inter-leg tunneling strength. We find several phases including a Meissner phase, vortex liquids, a vortex lattice, as well as a staggered-current phase. Moreover, there are regions where the chiral current reverses its direction, both in the Meissner and in the staggered-current phase. While the reversal in the latter case can be ascribed to spontaneous breaking of translational invariance, in the first it stems from an effective flux increase in the rung direction. Interactions are a necessary ingredient to realize either type of chiral-current reversal

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio
    • …
    corecore