25 research outputs found

    Recovery agenda for sustainable development post COVID-19 at the country level: Developing a fuzzy action priority surface

    Get PDF
    As a response to the urgent call for recovery actions against the COVID-19 crisis, this research aims to identify action priority areas post COVID-19 toward achieving the targets of the sustainable development goals (SDGs) within the 2030 Agenda for Sustainable Development launched by the United Nations (UN). This paper applies a mixed-method approach to map the post-COVID-19 SDGs targets on a fuzzy action priority surface at the country level in Iran, as a developing country, by taking the following four main steps: (1) using a modified Delphi method to make a list of the SDGs targets influenced by COVID-19; (2) using the best–worst method, as a multi-criteria decision-making tool, to weight the COVID-19 effects on the SDGs targets achievement; also (3) to weight the impact of the SDGs targets on the sustainable development implementation; and finally (4) designing a fuzzy inference system to calculate the action priority scores of the SDGs targets. As a result, reduction of poor people proportion by half (SDG 1.2), development-oriented policies for supporting creativity and job creation (SDG 8.3), end the pandemics and other epidemics (SDG 3.3), reduction of deaths and economic loss caused by disasters (SDG 11.5), and financial support for small-scale enterprises (SDG 9.3) were identified as the highest priorities for action, respectively, in the recovery agenda for sustainable development post COVID-19. The provided fuzzy action priority surface supports the UN’s SDGs achievement and implementing the 2030 Agenda for Sustainable Development in Iran. It also serves as a guideline to help the government, stakeholders, and policy-makers better analyze the long-term effects of the pandemic on the SDGs and their associated targets and mitigate its adverse economic, social, and environmental consequences. Graphical abstract: [Figure not available: see fulltext.

    Recovery agenda for sustainable development post COVID-19 at the country level: Developing a fuzzy action priority surface

    Get PDF
    As a response to the urgent call for recovery actions against the COVID-19 crisis, this research aims to identify action priority areas post COVID-19 toward achieving the targets of the sustainable development goals (SDGs) within the 2030 Agenda for Sustainable Development launched by the United Nations (UN). This paper applies a mixed-method approach to map the post-COVID-19 SDGs targets on a fuzzy action priority surface at the country level in Iran, as a developing country, by taking the following four main steps: (1) using a modified Delphi method to make a list of the SDGs targets influenced by COVID-19; (2) using the best–worst method, as a multi-criteria decision-making tool, to weight the COVID-19 effects on the SDGs targets achievement; also (3) to weight the impact of the SDGs targets on the sustainable development implementation; and finally (4) designing a fuzzy inference system to calculate the action priority scores of the SDGs targets. As a result, reduction of poor people proportion by half (SDG 1.2), development-oriented policies for supporting creativity and job creation (SDG 8.3), end the pandemics and other epidemics (SDG 3.3), reduction of deaths and economic loss caused by disasters (SDG 11.5), and financial support for small-scale enterprises (SDG 9.3) were identified as the highest priorities for action, respectively, in the recovery agenda for sustainable development post COVID-19. The provided fuzzy action priority surface supports the UN’s SDGs achievement and implementing the 2030 Agenda for Sustainable Development in Iran. It also serves as a guideline to help the government, stakeholders, and policy-makers better analyze the long-term effects of the pandemic on the SDGs and their associated targets and mitigate its adverse economic, social, and environmental consequences. Graphical abstract: [Figure not available: see fulltext.

    Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families

    Drag on a spheroidal particle at clean and surfactant-laden interfaces: effects of particle aspect ratio, contact angle and surface viscosities

    No full text
    Translation of a non-spherical particle trapped at a membrane or at a complex interface between fluids is a relevant situation occurring in biological, technological and everyday life systems. Here, we consider prolate spheroidal particles, translating at a clean or (insoluble) surfactant-laden planar interface located between a viscous fluid and air, protruding into the surrounding subphase. Both the subphase and monolayer contribute to the total resistance experienced by the particle, which in turn is a function of interface and bulk viscosities, particle size and aspect ratio as well as the immersion depth of the particle. We explore how the drag on a spheroidal particle at a viscous interface can both rise or decrease with particle size depending on the dimensionless Boussinesq and Marangoni numbers. For a surfactant-laden interface, the surfactant distribution in the vicinity of the moving spheroid is significantly affected by the particle's immersion depth. When a particle sinks more in the viscous fluid, as determined by the involved surface tensions, the difference in surfactant concentration between front and rear of the particle decreases. For the drag coefficient of a spherical particle at an incompressible interface at low shear Boussinesq numbers, we propose a correction to previously reported analytic expressions. We probe both parallel and perpendicular friction coefficients as they are significantly different depending on particle shape, qualitatively different depending on surface shear viscosity, and we resolve the full three-dimensional distortion of the flow field around the moving particle.ISSN:0022-1120ISSN:1469-764

    Drag on a spherical particle at the air-liquid interface: Interplay between compressibility, Marangoni flow, and surface viscosities

    No full text
    We investigate the flow of viscous interfaces carrying an insoluble surface active material, using numerical methods to shed light on the complex interplay between Marangoni stresses, compressibility, and surface shear and dilatational viscosities. We find quantitative relations between the drag on a particle and interfacial properties as they are required in microrheology, i.e., going beyond the asymptotic limits. To this end, we move a spherical particle probe at constant tangential velocity, symmetrically immersed at either the incompressible or compressible interface, in the presence and absence of surfactants, for a wide range of system parameters. A full three-dimensional finite element calculation is used to reveal the intimate coupling between the bulk and interfacial flows and the subtle effects of the different physical effects on the mixed-type velocity field that affects the drag coefficient, both in the bulk and at the interface. For an inviscid interface, the directed motion of the particle leads to a gradient in the concentration of the surface active species, which in turn drives a Marangoni flow in the opposite direction, giving rise to a force exerted on the particle. We show that the drag coefficient at incompressible interfaces is independent of the origin of the incompressibility (dilatational viscosity, Marangoni effects or a combination of both) and that its higher value can not only be related to the Marangoni effects, as suggested earlier. In confined flows, we show how the interface shear viscosity suppresses the vortex at the interface, generates a uniform flow, and consequently increases the interface compressibility and the Marangoni force on the particle. We mention available experimental data and provide analytical approximations for the drag coefficient that can be used to extract surface viscosities
    corecore