23 research outputs found

    Concept Graph Neural Networks for Surgical Video Understanding

    Full text link
    We constantly integrate our knowledge and understanding of the world to enhance our interpretation of what we see. This ability is crucial in application domains which entail reasoning about multiple entities and concepts, such as AI-augmented surgery. In this paper, we propose a novel way of integrating conceptual knowledge into temporal analysis tasks via temporal concept graph networks. In the proposed networks, a global knowledge graph is incorporated into the temporal analysis of surgical instances, learning the meaning of concepts and relations as they apply to the data. We demonstrate our results in surgical video data for tasks such as verification of critical view of safety, as well as estimation of Parkland grading scale. The results show that our method improves the recognition and detection of complex benchmarks as well as enables other analytic applications of interest

    SAGES consensus recommendations on surgical video data use, structure, and exploration (for research in artificial intelligence, clinical quality improvement, and surgical education)

    Get PDF
    BACKGROUND: Surgery generates a vast amount of data from each procedure. Particularly video data provides significant value for surgical research, clinical outcome assessment, quality control, and education. The data lifecycle is influenced by various factors, including data structure, acquisition, storage, and sharing; data use and exploration, and finally data governance, which encompasses all ethical and legal regulations associated with the data. There is a universal need among stakeholders in surgical data science to establish standardized frameworks that address all aspects of this lifecycle to ensure data quality and purpose. METHODS: Working groups were formed, among 48 representatives from academia and industry, including clinicians, computer scientists and industry representatives. These working groups focused on: Data Use, Data Structure, Data Exploration, and Data Governance. After working group and panel discussions, a modified Delphi process was conducted. RESULTS: The resulting Delphi consensus provides conceptualized and structured recommendations for each domain related to surgical video data. We identified the key stakeholders within the data lifecycle and formulated comprehensive, easily understandable, and widely applicable guidelines for data utilization. Standardization of data structure should encompass format and quality, data sources, documentation, metadata, and account for biases within the data. To foster scientific data exploration, datasets should reflect diversity and remain adaptable to future applications. Data governance must be transparent to all stakeholders, addressing legal and ethical considerations surrounding the data. CONCLUSION: This consensus presents essential recommendations around the generation of standardized and diverse surgical video databanks, accounting for multiple stakeholders involved in data generation and use throughout its lifecycle. Following the SAGES annotation framework, we lay the foundation for standardization of data use, structure, and exploration. A detailed exploration of requirements for adequate data governance will follow

    Artificial Intelligence in Surgery: Promises and Perils

    No full text
    Objective: The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. Summary Background Data: AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. Methods: A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Results: Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Conclusions: Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care

    Machine learning and coresets for automated real-time video segmentation of laparoscopic and robot-assisted surgery

    No full text
    © 2017 IEEE. Context-aware segmentation of laparoscopic and robot assisted surgical video has been shown to improve performance and perioperative workflow efficiency, and can be used for education and time-critical consultation. Modern pressures on productivity preclude manual video analysis, and hospital policies and legacy infrastructure are often prohibitive of recording and storing large amounts of data. In this paper we present a system that automatically generates a video segmentation of laparoscopic and robot-assisted procedures according to their underlying surgical phases using minimal computational resources, and low amounts of training data. Our system uses an SVM and HMM in combination with an augmented feature space that captures the variability of these video streams without requiring analysis of the nonrigid and variable environment. By using the data reduction capabilities of online k-segment coreset algorithms we can efficiently produce results of approximately equal quality, in realtime. We evaluate our system in cross-validation experiments and propose a blueprint for piloting such a system in a real operating room environment with minimal risk factors

    Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation

    No full text
    Abstract Background Operative courses of laparoscopic cholecystectomies vary widely due to differing pathologies. Efforts to assess intra-operative difficulty include the Parkland grading scale (PGS), which scores inflammation from the initial view of the gallbladder on a 1–5 scale. We investigated the impact of PGS on intra-operative outcomes, including laparoscopic duration, attainment of the critical view of safety (CVS), and gallbladder injury. We additionally trained an artificial intelligence (AI) model to identify PGS. Methods One surgeon labeled surgical phases, PGS, CVS attainment, and gallbladder injury in 200 cholecystectomy videos. We used multilevel Bayesian regression models to analyze the PGS’s effect on intra-operative outcomes. We trained AI models to identify PGS from an initial view of the gallbladder and compared model performance to annotations by a second surgeon. Results Slightly inflamed gallbladders (PGS-2) minimally increased duration, adding 2.7 [95% compatibility interval (CI) 0.3–7.0] minutes to an operation. This contrasted with maximally inflamed gallbladders (PGS-5), where on average 16.9 (95% CI 4.4–33.9) minutes were added, with 31.3 (95% CI 8.0–67.5) minutes added for the most affected surgeon. Inadvertent gallbladder injury occurred in 25% of cases, with a minimal increase in gallbladder injury observed with added inflammation. However, up to a 28% (95% CI − 2, 63) increase in probability of a gallbladder hole during PGS-5 cases was observed for some surgeons. Inflammation had no substantial effect on whether or not a surgeon attained the CVS. An AI model could reliably (Krippendorff’s α = 0.71, 95% CI 0.65–0.77) quantify inflammation when compared to a second surgeon (α = 0.82, 95% CI 0.75–0.87). Conclusions An AI model can identify the degree of gallbladder inflammation, which is predictive of cholecystectomy intra-operative course. This automated assessment could be useful for operating room workflow optimization and for targeted per-surgeon and per-resident feedback to accelerate acquisition of operative skills. Graphical abstrac

    Do the costs of robotic surgery present an insurmountable obstacle? A narrative review

    No full text
    With increasing market size and rising demand, the question arises whether the high cost impedes accessibility to robotic surgery. Despite all the apparent advantages robotic surgery offers to surgeons and patients, it is imperative for healthcare providers to weigh the insufficiently documented evidence for robotics against the exorbitant price. Aside from the high acquisition cost of robotic systems, the cost of instruments and accessories, maintenance, as well as the need for training, and the impact on procedural dynamics in the operating room factor into any cost–utility analysis. However, current perspectives provide an insufficient overview of available systems and their cost. And the lack of transparency and incomplete information provided by manufacturers impose a significant challenge to informed decision-making. This article gives a short overview of the cost of robotic surgery, what additional costs to consider, where to obtain information, and attempts to elaborate on the question of whether cost impedes the worldwide establishment of robotic surgery

    Challenges in surgical video annotation

    No full text
    Annotation of surgical video is important for establishing ground truth in surgical data science endeavors that involve computer vision. With the growth of the field over the last decade, several challenges have been identified in annotating spatial, temporal, and clinical elements of surgical video as well as challenges in selecting annotators. In reviewing current challenges, we provide suggestions on opportunities for improvement and possible next steps to enable translation of surgical data science efforts in surgical video analysis to clinical research and practice
    corecore