1,731 research outputs found

    A simple stochastic model for the evolution of protein lengths

    Full text link
    We analyse a simple discrete-time stochastic process for the theoretical modeling of the evolution of protein lengths. At every step of the process a new protein is produced as a modification of one of the proteins already existing and its length is assumed to be random variable which depends only on the length of the originating protein. Thus a Random Recursive Trees (RRT) is produced over the natural integers. If (quasi) scale invariance is assumed, the length distribution in a single history tends to a lognormal form with a specific signature of the deviations from exact gaussianity. Comparison with the very large SIMAP protein database shows good agreement.Comment: 12 pages, 4 figure

    Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential

    Full text link
    The spatial distribution of electric current under magnetic field and the resultant orbital magnetism have been studied for two-dimensional electrons under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in various regimes of temperature and magnetic field, and the microscopic conditions for the validity of Landau diamagnetism are clarified. Under a weak magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency) and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic moment fluctuates as a function of the field, the currents are irregularly distributed paramagnetically or diamagnetically inside the bulk region. As the temperature is raised under such a weak field, however, the currents in the bulk region are immediately reduced and finally there only remains the diamagnetic current flowing along the edge. At the same time, the usual Landau diamagnetism results for the total magnetic moment. The origin of this dramatic temperature dependence is seen to be in the multiple reflection of electron waves by the boundary confining potential, which becomes important once the coherence length of electrons gets longer than the system length. Under a stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in the bulk region cause de Haas-van Alphen effect at low temperature as T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c) under such a strong field, the bulk currents are reduced and the Landau diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure

    Many Body Effects on Electron Tunneling through Quantum Dots in an Aharonov-Bohm Circuit

    Full text link
    Tunneling conductance of an Aharonov-Bohm circuit including two quantum dots is calculated based on the general expression of the conductance in the linear response regime of the bias voltage. The calculation is performed in a wide temperature range by using numerical renormalization group method. Various types of AB oscillations appear depending on the temperature and the potential depth of the dots. Especially, AB oscillations have strong higher harmonics components as a function of the magnetic flux when the potential of the dots is deep. This is related to the crossover of the spin state due to the Kondo effect on quantum dots. When the temperature rises up, the amplitude of the AB oscillations becomes smaller reflecting the breaking of the coherency.Comment: 21 pages, 11 PostScript figures, LaTeX, uses jpsj.sty epsbox.st

    Failure of single-parameter scaling of wave functions in Anderson localization

    Full text link
    We show how to use properties of the vectors which are iterated in the transfer-matrix approach to Anderson localization, in order to generate the statistical distribution of electronic wavefunction amplitudes at arbitary distances from the origin of Ld1×L^{d-1} \times \infty disordered systems. For d=1d=1 our approach is shown to reproduce exact diagonalization results available in the literature. In d=2d=2, where strips of width L64 L \leq 64 sites were used, attempted fits of gaussian (log-normal) forms to the wavefunction amplitude distributions result in effective localization lengths growing with distance, contrary to the prediction from single-parameter scaling theory. We also show that the distributions possess a negative skewness SS, which is invariant under the usual histogram-collapse rescaling, and whose absolute value increases with distance. We find 0.15S0.300.15 \lesssim -S \lesssim 0.30 for the range of parameters used in our study, .Comment: RevTeX 4, 6 pages, 4 eps figures. Phys. Rev. B (final version, to be published

    Effect of Quantum Confinement on Electron Tunneling through a Quantum Dot

    Full text link
    Employing the Anderson impurity model, we study tunneling properties through an ideal quantum dot near the conductance minima. Considering the Coulomb blockade and the quantum confinement on an equal footing, we have obtained current contributions from various types of tunneling processes; inelastic cotunneling, elastic cotunneling, and resonant tunneling of thermally activated electrons. We have found that the inelastic cotunneling is suppressed in the quantum confinement limit, and thus the conductance near its minima is determined by the elastic cotunneling at low temperature (kBTΓk_BT \ll \Gamma, Γ\Gamma: dot-reservoir coupling constant), or by the resonant tunneling of single electrons at high temperature (kBTΓk_BT \gg \Gamma).Comment: 11 pages Revtex, 2 Postscript figures, To appear in Phys.Rev.

    Transmission Phase Shift of a Quantum Dot with Kondo Correlations

    Full text link
    We study the effects of Kondo correlations on the transmission phase shift of a quantum dot in an Aharonov-Bohm ring. We predict in detail how the development of a Kondo resonance should affect the dependence of the phase shift on transport voltage, gate voltage and temperature. This system should allow the first direct observation of the well-known scattering phase shift of pi/2 expected (but not directly measurable in bulk systems) at zero temperature for an electron scattering off a spin-1/2 impurity that is screened into a singlet.Comment: 4 pages Revtex, 4 figures, final published versio

    Random Matrix Theory of Transition Strengths and Universal Magnetoconductance in the Strongly Localized Regime

    Full text link
    Random matrix theory of the transition strengths is applied to transport in the strongly localized regime. The crossover distribution function between the different ensembles is derived and used to predict quantitatively the {\sl universal} magnetoconductance curves in the absence and in the presence of spin-orbit scattering. These predictions are confirmed numerically.Comment: 15 pages and two figures in postscript, revte

    Fine structure in the off-resonance conductance of small Coulomb blockade systems

    Full text link
    We show how a fine, multiple-peak structure can arise in the off-resonance, zero-bias conductance of Coulomb blockade systems. In order to understand how this effect comes about one must abandon the orthodox, mean-field understanding of the Coulomb blockade phenomenon and consider quantum fluctuations in the occupation of the single-particle electronic levels. We illustrate such an effect with a spinless Anderson-like model for multi-level systems and an equation-of-motion method for calculating Green's functions that combines two simple decoupling schemes.Comment: 5 pages, 3 figures, postscript file also available at http://www.pa.uky.edu/~palacios/papers/eom.ps One figure added. Discussion of results extende

    Spin-orbit Scattering and the Kondo Effect

    Full text link
    The effects of spin-orbit scattering of conduction electrons in the Kondo regime are investigated theoretically. It is shown that due to time-reversal symmetry, spin-orbit scattering does not suppress the Kondo effect, even though it breaks spin-rotational symmetry, in full agreement with experiment. An orbital magnetic field, which breaks time-reversal symmetry, leads to an effective Zeeman splitting, which can be probed in transport measurements. It is shown that, similar to weak-localization, this effect has anomalous magnetic field and temperature dependence.Comment: 10 pages, RevTex, one postscript figure available on request from [email protected]

    Correlations in the cotunneling regime of a quantum dot

    Full text link
    Off-resonance conductance through weakly coupled quantum dots ("valley conductance") is governed by cotunneling processes in which a large number of dot states participate. Virtually the same states participate in the transport at consecutive valleys, which leads to significant valley-valley conductance correlations. These correlations are calculated within the constant interaction model. Comparison with experiment shows that these correlations are less robust in reality. Among the possible reasons for this is the breakdown of the constant interaction model, accompanied by "scrambling" of the dot as the particle number is varied.Comment: 10 pages, 4 eps-figures; reference adde
    corecore