14 research outputs found

    Epidemiologic Study of Vibrio vulnificus Infections by Using Variable Number Tandem Repeats

    Get PDF
    A 3-year environmental and clinical Vibrio vulnificus survey using simple-sequence repeats typing shows that V. vulnificus biotype 3 constitutes ≈21% of the bacterium population in tested aquaculture ponds as opposed to ≈86% of clinical cases. Simple-sequence repeats proved to be a useful epidemiologic tool, providing information on the environmental source of the pathogen

    Insights from chironomid oviposition is useful to visual pest control

    Full text link

    Habitat availability mediates chironomid density-dependent oviposition

    No full text
    Abstract Knowledge of density-dependent processes and how they are mediated by environmental factors is critically important for understanding population and community ecology of insects, as well as for mitigating harmful insect-borne diseases. Here, we tested whether the oviposition of chironomids (Diptera: Chironomidae; non-biting midges), known to carry the Cholera pathogen Vibrio cholerae, is density dependent and if it is mediated by habitat availability. We used two multiple choice experiments in habitat-limited and habitat-unlimited environments and performed isodar analysis on counts of egg batches after controlling the polarization of light reflected from the habitats, which is known to affect their attractiveness to ovipositing chironomids. We found that, when habitats are limited, egg batch isodars indicate that chironomid selection is density dependent. Although a greater number of individuals selected to oviposit in highly polarized sites, oviposition was also common in sites with low polarization. When habitats are unlimited, chironomid selection is either weakly density dependent, or completely density independent. Chironomids oviposit to a very large extent in sites with high level of polarization, oviposit to a small extent in sites with medium level of polarization, and almost completely disregard unpolarized sites. We suggest that ovipositing females consider the availability of habitats in their surroundings when they choose an oviposition site. When high quality habitats are scarce, more females opt to breed in low quality sites. These findings may be used to limit the spread of Cholera by controlling the habitats available for chironomid oviposition

    Wind Direction and Its Linkage with Vibrio cholerae

    No full text

    Vibrio cholerae Hemagglutinin/Protease Degrades Chironomid Egg Masses

    No full text
    Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. The disease does not persist in a chronic state in humans or animals. The pathogen is naturally present as a free-living organism in the environment. Recently, it was suggested that egg masses of the nonbiting midge Chironomus sp. (Diptera) harbor and serve as a nutritive source for V. cholerae, thereby providing a natural reservoir for the organism. Here we report that V. cholerae O9, O1, and O139 supernatants lysed the gelatinous matrix of the chironomid egg mass and inhibited eggs from hatching. The extracellular factor responsible for the degradation of chironomid egg masses (egg mass degrading factor) was purified from V. cholerae O9 and O139 and was identified as the major secreted hemagglutinin/protease (HA/P) of V. cholerae. The substrate in the egg mass was characterized as a glycoprotein. These findings show that HA/P plays an important role in the interaction of V. cholerae and chironomid egg masses

    Vibrio vulnificus Typing Based on Simple Sequence Repeats: Insights into the Biotype 3 Group▿ †

    No full text
    Vibrio vulnificus is an opportunistic, highly invasive human pathogen with worldwide distribution. V. vulnificus strains are commonly divided into three biochemical groups (biotypes), most members of which are pathogenic. Simple sequence repeats (SSR) provide a source of high-level genomic polymorphism used in bacterial typing. Here, we describe the use of variations in mutable SSR loci for accurate and rapid genotyping of V. vulnificus. An in silico screen of the genomes of two V. vulnificus strains revealed thousands of SSR tracts. Twelve SSR with core motifs longer than 5 bp in a panel of 32 characterized and 56 other V. vulnificus isolates, including both clinical and environmental isolates from all three biotypes, were tested for polymorphism. All tested SSR were polymorphic, and diversity indices ranged from 0.17 to 0.90, allowing a high degree of discrimination among isolates (27 of 32 characterized isolates). Genetic analysis of the SSR data resulted in the clear distinction of isolates that belong to the highly virulent biotype 3 group. Despite the clonal nature of this new group, SSR analysis demonstrated high-level discriminatory power within the biotype 3 group, as opposed to other molecular methods that failed to differentiate these isolates. Thus, SSR are suitable for rapid typing and classification of V. vulnificus strains by high-throughput capillary electrophoresis methods. SSR (≥5 bp) by their nature enable the identification of variations occurring on a small scale and, therefore, may provide new insights into the newly emerged biotype 3 group of V. vulnificus and may be used as an efficient tool in epidemiological studies

    Environmental monitoring of Vibrio cholerae using chironomids in India

    No full text
    Environmental Vibrio cholerae strains belonging to the non-O1/non-O139 serogroups are natural inhabitants of freshwater including estuarine environments. Recent findings indicated that chironomids (Diptera: Chironomidae), the most widely distributed insects in freshwater, serve as a natural reservoir of these bacteria. Here we study the role of chironomids, particularly exuviae as carriers and as a monitoring tool for the distribution of V. cholerae in the environment. During a survey conducted in India (June 2006), 326 V. cholerae non-O1/non-O139 isolates were isolated from chironomid egg masses, larvae and exuviae. In addition, a heat-stable enterotoxin (nag-st) positive strain was isolated from exuviae during the local cholera outbreak. We identified 62 different strains in a subset of 102 isolates by analysis of variable number of tandem repeats (VNTR), demonstrating a high variation of V. cholerae on hosting chironomids. Our results show that chironomids can both maintain and distribute this overwhelming diversity of environmental V. cholerae strains, including toxigenic ones. Exuviae proved to be an efficient tool for the monitoring of environmental V. cholerae, offering simple, direct and practical access for on-shore collection. Finally, finding toxigenic V. cholerae on chironomids in endemic areas, together with molecular typing, may potentially improve monitoring of cholera in the future
    corecore