4,025 research outputs found

    Mapping correlated Gaussian patterns in a perceptron

    Get PDF
    The authors study the performance of a single-layer perceptron in realising a binary mapping of Gaussian input patterns. By introducing non-trivial correlations among the patterns, they generate a family of mappings including easier ones where similar inputs are mapped into the same output, and more difficult ones where similar inputs are mapped into different classes. The difficulty of the problem is gauged by the storage capacity of the network, which is higher for the easier problems

    Ultrasmall volume Plasmons - yet with complete retardation effects

    Full text link
    Nano particle-plasmons are attributed to quasi-static oscillation with no wave propagation due to their subwavelength size. However, when located within a band-gap medium (even in air if the particle is small enough), the particle interfaces are acting as wave-mirrors, incurring small negative retardation. The latter when compensated by a respective (short) propagation within the particle substantiates a full-fledged resonator based on constructive interference. This unusual wave interference in the deep subwavelength regime (modal-volume<0.001lambda^3) significantly enhances the Q-factor, e.g. 50 compared to the quasi-static limit of 5.5.Comment: 16 pages, 6 figure

    Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime

    Full text link
    Recently, Dial et al. presented measurements of the tunneling density of states into the bulk of a two dimensional electron gas under strong magnetic fields. Several high energy features appear in the measured spectrum showing a distinct dependence on filling factor and a unique response to temperature. We present a quantitative account of the observed structure, and argue it results from the repulsive Coulomb interactions between the tunneling electron and states localized at disorder potential wells. The quenching of the kinetic energy by the applied magnetic field leads to an electron addition spectrum that is primarily determined by the external magnetic field and is nearly independent of the disorder potential. Using a Hartree-Fock model we reproduce the salient features of the observed structure

    Vibrational inelastic scattering effects in molecular electronics

    Get PDF
    We describe how to treat the interaction of travelling electrons with localised vibrational modes in nanojunctions. We present a multichannel scattering technique which can be applied to calculate the transport properties for realistic systems, and show how it is related to other methods that are useful in particular cases. We apply our technique to describe recent experiments on the conductance through molecular junctions.Comment: LaTeX, 12 pages, 3 figure

    The Effects of Resonant Tunneling on Magnetoresistance through a Q uantum Dot

    Full text link
    The effect of resonant tunneling on magnetoresistance (MR) is studied theoretically in a double junction system. We have found that the ratio of the MR of the resonant peak current is reduced more than that of the single junction, whereas that of the valley current is enhanced depending on the change of the discrete energy-level under the change of magnetic field. We also found that the peak current-valley current (PV) ratio decreases when the junction conductance increases.Comment: 11 pages, 3 figures(mail if you need), use revtex.st

    Hereditarily finite sets and identity trees

    Get PDF
    AbstractSome asymptotic results about the sizes of certain sets of hereditarily finite sets, identity trees, and finite games are proven
    • …
    corecore