841 research outputs found
Penetrating Ionizing Radiation Levels Observed in the Lower Arkansas and White River Valleys of Arkansas
Environmental levels of penetrating ionizing radiation were measured in the lower Arkansas and White River valleys of Arkansas. Measurements of environmental gamma and cosmic rays were made using a portable high pressure ionization chamber. The surveyed area encompassed a large coal-fired industrial plant. Observed exposure rates ranged from 5.9 microRoentgens per hour (μR/h) to 13.4 μR/h. The average exposure rate for the region was 8.8 μR/h. This value corresponds to 77 millirem (mrem) or 0.77 milliSieverts (mSv) per year. In comparison, a prior state-wide survey reported an average dose equivalent rate of 78.2 mrem (0.782 mSv) per year in Arkansas
The splenium of the corpus callosum:embryology, anatomy, function and imaging with pathophysiological hypothesis
Background and purpose The splenium of the corpus callosum is the most posterior part of the corpus callosum. Its embryological development, anatomy, vascularization, function, imaging of pathology, possible pathophysiological mechanisms by which pathology may develop and the clinical consequences are discussed. Methods A literature-based description is provided on development, anatomy and function. MR and CT images are used to demonstrate pathology. The majority of pathology, known to affect the splenium, and the clinical effects are described in three subsections: (A) limited to the splenium, with elaboration on pathophysiology of reversible splenial lesions, (B) pathology in the cerebral white matter extending into or deriving from the splenium, with special emphasis on tumors, and (C) splenial involvement in generalized conditions affecting the entire brain, with a hypothesis for pathophysiological mechanisms for the different diseases. Results The development of the splenium is preceded by the formation of the hippocampal commissure. It is bordered by the falx and the tentorium and is perfused by the anterior and posterior circulation. It contains different caliber axonal fibers and the most compact area of callosal glial cells. These findings may explain the affinity of specific forms of pathology for this region. The fibers interconnect the temporal and occipital regions of both hemispheres reciprocally and are important in language, visuospatial information transfer and behavior. Acquired pathology may lead to changes in consciousness. Conclusion The development, location, fiber composition and vascularization of the splenium make it vulnerable to specific pathological processes. It appears to play an important role in consciousness
Adhesion-cohesion balance of prepreg tack in thermoset automated fiber placement. Part 1: Adhesion and surface wetting
The constitution of prepreg tack in automated fiber placement (AFP) is affected by a sensitive balance between adhesive interfacial bond strength and cohesive strength of the prepreg resin. In an effort to explore the role of interfacial liquid-solid interaction on the tack of commercial aerospace-grade epoxy prepreg, a surface wetting analysis was performed on AFP-related substrates. The standard test liquid combination water/diiodmethane and extracted neat epoxy resin were used for contact angle measurement employing the sessile drop method and the Owens-Wendt-Rabel-Kaelble (OWRK) model. Additional rheological and topographical analyses were carried out to account for viscous resin flow on surfaces of different roughness. The results from the material characterization are discussed against the background of tack measurement by probe tack testing utilizing a rheometer. Significant differences between the investigated surfaces in terms of both the maximum tack level and the onset temperatures of adhesion were found as a function of test parameters relevant for contact formation. General agreement with the experimental tack results was observed employing a topographically extended version of the Dahlquist criterion. For each substrate, a temperature-dependent critical storage modulus could be determined that conforms to the onset temperature of tackiness. Contact angle measurements revealed a correlation between the thermodynamic work of adhesion and maximum tack and, moreover, the tack onset in the adhesive regime when additionally incorporating surface topography. Matching ratios of polar and dispersive surface free energy and surface tension components were found to favor the molecular interaction at the interface between prepreg resin and substrate
Protein-mediated DNA Loop Formation and Breakdown in a Fluctuating Environment
Living cells provide a fluctuating, out-of-equilibrium environment in which
genes must coordinate cellular function. DNA looping, which is a common means
of regulating transcription, is very much a stochastic process; the loops arise
from the thermal motion of the DNA and other fluctuations of the cellular
environment. We present single-molecule measurements of DNA loop formation and
breakdown when an artificial fluctuating force, applied to mimic a fluctuating
cellular environment, is imposed on the DNA. We show that loop formation is
greatly enhanced in the presence of noise of only a fraction of , yet
find that hypothetical regulatory schemes that employ mechanical tension in the
DNA--as a sensitive switch to control transcription--can be surprisingly robust
due to a fortuitous cancellation of noise effects
A robust, high-flux source of laser-cooled ytterbium atoms
We present a high-flux source of cold ytterbium atoms that is robust, lightweight and low-maintenance. Our apparatus delivers 1 × 109 atoms s−1 into a 3D magneto-optical trap without requiring water cooling or high current power supplies. We achieve this by employing a Zeeman slower and a 2D magneto-optical trap fully based on permanent magnets in Halbach configurations. This strategy minimizes mechanical complexity, stray magnetic fields, and heat production while requiring little to no maintenance, making it applicable to both embedded systems that seek to minimize electrical power consumption, and large scale experiments to reduce the complexity of their subsystems
Mid-term results after operative treatment of rockwood grade III-V Acromioclavicular joint dislocations with an AC-hook-plate
Acromioclavicular joint dislocations often occur in athletic, young patients after blunt force to the shoulder. Several static and dynamic operative procedures with or without primary ligament replacement have been described. Between February 2003 and March 2009 we treated 313 patients suffering from Rockwood III-V lesions of the AC joint with an AC-hook plate. 225 (72%) of these patients could be followed up. Mean operation time was 42 minutes in the conventional group and 47 minutes in the minimal invasive group. The postoperative pain on a scale from 1 to 10 (VAS-scale) was rated 2.7 in the conventional group and 2.2 in the minimal invasive group. Taft score showed very good and good results in 189 patients (84%). Constant score showed an average of 92.4 of 100 possible points with 89% excellent and good results and 11% satisfying results. All patients had some degree of pain or discomfort with the hookplate in place. These symptoms were relieved after removal of the plate. The overall complication rate was 10.6%. There were 6 superficial soft tissue infections, 1 fracture of the acromion, 7 redislocations after removal of the hook-plate. We observed 4 broken hooks which could be removed at the time of plate removal, 4 seromas and 2 cases of lateral clavicle bone infection, which required early removal of the plate. We can conclude that clavicle hook plate is a convenient device for the surgical treatment of Rockwood Grade III-V dislocations, giving good mid-term results with a low overall complication rate compared to the literature. Early functional therapy is possible and can avoid limitations in postoperative shoulder function
- …