576 research outputs found

    Lorentz completion of effective string action

    Get PDF
    In the presence of a confining flux tube between a pair of sources the vacuum is no longer Poincare' invariant. This symmetry is nonlinearly realized in the effective string action. A general method for finding a large class of Lorentz invariant contributions to the action is described. The relationship between this symmetry and diffeomorphism invariance is further investigated.Comment: 8 pages, 3 figures, Contribution to the Proceedings of the conference 'Xth Quark Confinement and the Hadron Spectrum', October 8-12, 2012, TUM Campus Garching, Munich, Germany; references adde

    Effective string description of confining flux tubes

    Full text link
    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.Comment: 21 pages, 8 figures, Contribution to IJMPA special issue "Lattice gauge theory beyond QCD

    Colliders and conformal interfaces

    Full text link
    We set up a scattering experiment of matter against an impurity which separates two generic one-dimensional critical quantum systems. We compute the flux of reflected and transmitted energy, thus defining a precise measure of the transparency of the interface between the related two-dimensional conformal field theories. If the largest symmetry algebra is Virasoro, we find that the reflection and transmission coefficients are independent of the details of the initial state, and are fixed in terms of the central charges and of the two-point function of the displacement operator. The situation is more elaborate when extended symmetries are present. Positivity of the total energy flux at infinity imposes bounds on the coefficient of the two-point function of the displacement operator, which controls the free-energy cost of a small deformation of the interface. Finally, we study out-of-equilibrium steady states of a critical system connecting two reservoirs at different temperatures. In the absence of extended symmetries, our result implies that the energy flux across an impurity is proportional to the difference of the squared temperatures and controlled by the reflection coefficient.Comment: 32+10 pages, 14 figures, a discussion on non-equilibrium steady states adde

    Radial coordinates for defect CFTs

    Full text link
    We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently compute conformal blocks in a power expansion. We illustrate this fact in the case of scalar external operators. We also elucidate the convergence properties of the bulk and defect OPE decompositions of the two-point function. In particular, we remark that the expansion of the two-point function in powers of the new cross ratios converges everywhere, a property not shared by the cross ratios customarily used in defect CFT. We comment on the crucial relevance of this fact for the numerical bootstrap.Comment: Matches journal version; the attached mathematica file (Bulk CB.nb + rec.txt) computes the conformal blocks in the bulk channe
    • 

    corecore