24 research outputs found

    MHC-correlated preferences in diestrous female horses (Equus caballus).

    Get PDF
    Genes of the major histocompatibility complex (MHC) have been shown to influence communication in many vertebrates, possibly with context-specific MHC-correlated reactions. Here we test for MHC-linked female preferences in the polygynous horse (Equus caballus) by repeatedly exposing 19 mares to a group of seven sexually experienced stallions. Each mare was tested four times during two consecutive reproductive cycles, twice during estrus and twice during diestrus. Male plasma testosterone concentrations were determined from weekly blood samples, and equine leukocyte antigen (ELA) class I and II alleles were determined serologically at the end of the experiments. Perception of male attractiveness was strongly dependent on estrous cycle: mean preference scores did not correlate for mares in diestrus and estrus and varied more during estrus than during diestrus. We found elevated female interests for MHC-dissimilar stallions, but only during diestrus, not during estrus. Female preferences were not significantly predicted by mean male testosterone plasma concentrations. However, testosterone concentrations changed during the 11 weeks of the experiment. By the end of the experiment, average testosterone concentration was significantly correlated to the average number of MHC alleles the stallions shared with the mares. We conclude that the MHC affects female preferences for stallions, but non-MHC linked male characteristics can overshadow effects of the MHC during estrus

    On the experimental verification of quantum complexity in linear optics

    Full text link
    The first quantum technologies to solve computational problems that are beyond the capabilities of classical computers are likely to be devices that exploit characteristics inherent to a particular physical system, to tackle a bespoke problem suited to those characteristics. Evidence implies that the detection of ensembles of photons, which have propagated through a linear optical circuit, is equivalent to sampling from a probability distribution that is intractable to classical simulation. However, it is probable that the complexity of this type of sampling problem means that its solution is classically unverifiable within a feasible number of trials, and the task of establishing correct operation becomes one of gathering sufficiently convincing circumstantial evidence. Here, we develop scalable methods to experimentally establish correct operation for this class of sampling algorithm, which we implement with two different types of optical circuits for 3, 4, and 5 photons, on Hilbert spaces of up to 50,000 dimensions. With only a small number of trials, we establish a confidence >99% that we are not sampling from a uniform distribution or a classical distribution, and we demonstrate a unitary specific witness that functions robustly for small amounts of data. Like the algorithmic operations they endorse, our methods exploit the characteristics native to the quantum system in question. Here we observe and make an application of a "bosonic clouding" phenomenon, interesting in its own right, where photons are found in local groups of modes superposed across two locations. Our broad approach is likely to be practical for all architectures for quantum technologies where formal verification methods for quantum algorithms are either intractable or unknown.Comment: Comments welcom

    The potential effects of social interactions on reproductive efficiency of stallions

    No full text
    The reproductive efficiency of stabled domestic stallions is often lower than what could be expected from observations in feral herds. In the wild, stallions typically live with mares in harem bands, with other stallions in bachelor bands, or occasionally in mixed-sex transitional bands. We, therefore, argue that permanent contact with mares may increase reproductive efficiency of stallions suffering from low libido and/or fertility. We also provide a summary of our present knowledge of natural conditions, management, and husbandry of domestic stallions, and of intra- and intersexual behavioral interactions in horses
    corecore