40 research outputs found

    Arctic environmental change research and Antarctic studies have mutual benefits

    Get PDF

    Effects of black carbon and Icelandic dust on snow albedo, melt and density

    Get PDF
    Light-absorbing impurities in the cryosphere are of hydrological, environmental and climatic importance. The wet and dry deposition of black carbon (BC), organic carbon (OC), and dust particles affect the optical properties and melt of snow and ice. In the Arctic region, the climatic effects are amplified, and surface albedo feedback is often cited as the main contributor. The aim of this thesis is to fill in some of the gaps in our knowledge of the effects of BC, OC, and Icelandic dust on snow in the European Arctic through a series of field and laboratory experiments and an analysis of the resulting data, including modeling. The thesis presents a new hypothesis on the snow density effects of light-absorbing impurities, an important quantity for climate modeling and remote sensing. Three processes are suggested to explain the proposed ”BC density effect”. Experimental results show that dirty snow releases melt water quicker than cleaner snow. The albedo of natural seasonally melting snow in Sodankylä, north of the Arctic Circle, is found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. The radiative transfer modeling results show that the observed solar zenith angle asymmetry results in a 2–4 % daily error for satellite snow albedo estimates. Surface albedo model results indicate that the biggest snow albedo changes due to BC are expected in the ultraviolet (UV) part of the electromagnetic spectrum. The albedo of natural seasonal snow measured in Sodankylä, is found to be lower than expected. Solar UV and visible (VIS) albedo values of 0.6–0.8 in the accumulation period and 0.5–0.7 during melting are observed. The low albedo values are explained to be due to large snow grain sizes up to ∼3 mm in diameter, meltwater surrounding the grains and increasing the effective grain size, and absorption caused by impurities in the natural snow (87 ppb BC and 2894 ppb OC). The BC contents of the surface snow layer at the Sodankylä Arctic Research Center, Finland, is higher than expected. Increased BC in spring time suggests surface accumulation of hydrophobic BC during snow melt. Some of the high BC concentrations are related to anthropogenic soot transported from the Kola Peninsula, Russia. The origin of OC can be anthropogenic or natural, and may include pollen, seeds, lichens, natural litter or microorganisms that reside in snow and ice. Iceland is the most important Arctic dust source, but a scientific assessment of its impacts on the cryosphere is currently unavailable and scientific results are urgently needed to investigate the role of Icelandic dust in Iceland and elsewhere, in the past, present and future. Experimental results on Icelandic volcanic ash show that a thin layer increases the snow and ice melt but that an ash layer exceeding a certain critical thickness causes insulation. The Arctic results of this thesis have relevance to the assessment of Arctic climate change, including modeling and satellite applications

    Intercomparison Experiment of Water-Insoluble Carbonaceous Particles in Snow in a High-Mountain Environment (1598 m a.s.l.)

    Get PDF
    The harmonization of sampling, sample preparation and laboratory analysis methods to detect carbon compounds in snow requires detailed documentation of those methods and their uncertainties. Moreover, intercomparison experiments are needed to reveal differences and quantify the uncertainties further. Here, we document our sampling, filtering, and analysis protocols used in the intercomparison experiment from three laboratories to detect water-insoluble carbon in seasonal surface snow in the high-mountain environment at Kolm Saigurn (47.067842° N, 12.98394° E, alt 1598 m a.s.l.), Austria. The participating laboratories were TU Wien (Austria), the University of Florence (Italy), and the Finnish Meteorological Institute (Finland). For the carbon analysis, the NIOSH5040 and EUSAAR2 protocols of the OCEC thermal-optical method were used. The median of the measured concentrations of total carbon (TC) was 323 ppb, organic carbon (OC) 308 ppb, and elemental carbon (EC) 16 ppb. The methods and protocols used in this experiment did not reveal large differences between the laboratories, and the TC, OC, and EC values of four inter-comparison locations, five meters apart, did not show meter-scale horizontal variability in surface snow. The results suggest that the presented methods are applicable for future research and monitoring of carbonaceous particles in snow. Moreover, a recommendation on the key parameters that an intercomparison experiment participant should be asked for is presented to help future investigations on carbonaceous particles in snow. The work contributes to the harmonization of the methods for measuring the snow chemistry of seasonal snow deposited on the ground

    Insulation effects of Icelandic dust and volcanic ash on snow and ice

    Get PDF
    In the Arctic region, Iceland is an important source of dust due to ash production from volcanic eruptions. In addition, dust is resuspended from the surface into the atmosphere as several dust storms occur each year. During volcanic eruptions and dust storms, material is deposited on the glaciers where it influences their energy balance. The effects of deposited volcanic ash on ice and snow melt were examined using laboratory and outdoor experiments. These experiments were made during the snow melt period using two different ash grain sizes (1 phi and 3.5 phi) from the Eyjafjallajokull 2010 eruption, collected on the glacier. Different amounts of ash were deposited on snow or ice, after which the snow properties and melt were measured. The results show that a thin ash layer increases the snow and ice melt but an ash layer exceeding a certain critical thickness caused insulation. Ash with 1 phi in grain size insulated the ice below at a thickness of 9-15 mm. For the 3.5 phi grain size, the insulation thickness is 13 mm. The maximum melt occurred at a thickness of 1 mm for the 1 phi and only 1-2 mm for 3.5 phi ash. A map of dust concentrations on Vatnajokull that represents the dust deposition during the summer of 2013 is presented with concentrations ranging from 0.2 up to 16.6 g m(-2).Peer reviewe

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth's systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2, >560 000 km2, and >240 000 km2, respectively. In the Arctic HLD region (≥60∘ N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2), area with SI ≥0.7 is 2.3 % (440 804 km2), and area with SI ≥0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50∘ N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55∘ N in Canada and a “cold HLD-source area” including areas north of 60∘ N in Eurasia and north of 58∘ N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD

    Stilbenoid compounds inhibit NF-κB-mediated inflammatory responses in the Drosophila intestine

    Get PDF
    IntroductionStilbenoid compounds have been described to have anti-inflammatory properties in animal models in vivo, and have been shown to inhibit Ca2+-influx through the transient receptor potential ankyrin 1 (TrpA1).MethodsTo study how stilbenoid compounds affect inflammatory signaling in vivo, we have utilized the fruit fly, Drosophila melanogaster, as a model system. To induce intestinal inflammation in the fly, we have fed flies with the intestinal irritant dextran sodium sulphate (DSS).ResultsWe found that DSS induces severe changes in the bacteriome of the Drosophila intestine, and that this dysbiosis causes activation of the NF-κB transcription factor Relish. We have taken advantage of the DSS-model to study the anti-inflammatory properties of the stilbenoid compounds pinosylvin (PS) and pinosylvin monomethyl ether (PSMME). With the help of in vivo approaches, we have identified PS and PSMME to be transient receptor ankyrin 1 (TrpA1)-dependent antagonists of NF-κB-mediated intestinal immune responses in Drosophila. We have also computationally predicted the putative antagonist binding sites of these compounds at Drosophila TrpA1.DiscussionTaken together, we show that the stilbenoids PS and PSMME have anti-inflammatory properties in vivo in the intestine and can be used to alleviate chemically induced intestinal inflammation in Drosophila

    Snow albedo and its sensitivity to changes in deposited light-absorbing particles estimated from ambient temperature and snow depth observations at a high-altitude site in the Himalaya

    Get PDF
    Snow darkening by deposited light-absorbing particles (LAP) accelerates snowmelt and shifts the snow meltout date (MOD). Here, we present a simple approach to estimate the snow albedo variability due to LAP deposition and test this method with data for 2 seasons (February-May 2016 and December 2016-June 2017) at a high-altitude valley site in the Central Himalayas, India. We derive a parameterization for the snow albedo that only depends on the daily observations of average ambient temperature and change in snow depth, as well as an assumed average concentration of LAP in snow precipitation. Linear regression between observed and parameterized albedo for the base case assuming an equivalent elemental carbon concentration [ECeq] of 100 ng g(-1) in snow precipitation yields a slope of 0.75 and a Pearson correlation coefficient r(2) of 0.76. However, comparing the integrated amount of shortwave radiation absorbed during the winter season using observed albedo versus base case albedo resulted in rather small differences of 11% and 4% at the end of Seasons 1 and 2, respectively. The enhanced energy absorbed due to LAP at the end of the 2 seasons for the base case scenario (assuming an [ECeq] of 100 ng g(-1) in snow precipitation) was 40% and 36% compared to pristine snow. A numerical evaluation with different assumed [ECeq] in snow precipitation suggests that the relative sensitivity of snow albedo to changes in [ECeq] remains rather constant for the 2 seasons. Doubling [ECeq] augments the absorption by less than 20%, highlighting that the impact on a MOD is small even for a doubling of average LAP in snow precipitation.Peer reviewe

    In search of traceability : two decades of calibrated Brewer UV measurements in Sodankyla and Jokioinen

    Get PDF
    The two Brewer spectrophotometers of the Finnish Meteorological Institute at Jokioinen and Sodankyla have been operated according to the highest levels of the WMO/GAW (World Meteorological Organization/Global Atmosphere Watch) recommendations with rigorous quality control and quality assurance. The calibration of the instruments is based on annual recalibrations of primary standard lamps in the VTT MIKES Metrology National Standards Laboratory in Finland and an exhaustive measurement program with measurements of standard and working lamps in the on-site optical laboratories. Over the years, the maintenance of the calibration has produced data sets of approximately 2000 lamp scans for both instruments. An extensive re-examination of the lamp measurements and the response of the spectrophotometers was carried out. The primary standard lamps were found to age on an average rate of 0.3% per burn. The responsivity at wavelength 311 nm was found to exhibit both long-term and short-term changes. The overall long-term change was declining. In addition, abrupt changes of as large as 25% were detected. The short-term changes were found to fluctuate on time frames shorter than the interval between the measurements of the primary standard lamps. This underlines the importance of the use of more frequently measured working standard lamps.Peer reviewe

    Data flow of spectral UV measurements at Sodankylä and Jokioinen

    Get PDF
    The data flow involved in a long-term continuous solar spectral UV irradiance monitoring program is investigated and structured to provide an overall view on the multiphase process from data acquisition to the final products. The program employing Brewer spectrophotometers as measuring instruments is maintained by the Finnish Meteorological Institute (FMI) ever since the 1990s at two sites in Finland: Sodankyla (67 degrees N) and Jokioinen (61 degrees N). It is built upon rigorous operation routines, processing procedures, and tools for quality control (QC) and quality analysis (QA) under continuous development and evaluation. Three distinct levels of data emerge, each after certain phase in the data flow: Level 0 denoting raw data, Level 1 meaning calibrated data processed in near-real time, and Level 2 comprising of postprocessed data corrected for all distinguishable errors and known inaccuracies. The final products disseminated to the users are demonstrated to result from a process with a multitude of separate steps, each required in the production of high-quality data on solar UV radiation at the Earth's surface.Peer reviewe
    corecore