139 research outputs found

    Quasi-Two Dimensional Diluted Magnetic Semiconductors with Arbitrary Carrier Degeneracy

    Full text link
    In the framework of the generalized mean field theory, conditions for arising the ferromagnetic state in a two-dimensional diluted magnetic semiconductor and the features of that state are defined. RKKY-interaction of magnetic impurities is supposed. The spatial disorder of their arrangement and temperature alteration of the carrier degeneracy are taken into account

    Magnetic properties of nanosized diluted magnetic semiconductors with band splitting

    Full text link
    The continual model of the nonuniform magnetism in thin films and wires of a diluted magnetic semiconductor is considered with taking into account the finite spin polarization of carriers responsible for the indirect interaction of magnetic impurities (e.g. via RKKY mechanism). Spatial distributions (across the film thickness or the wire radius) of the magnetizaton and carrier concentrations of different spin orientations, as well as the temperature dependence of the average magnetization are determined as the solution of the nonlinear integral equation

    Piezomagnetism and Stress Induced Paramagnetic Meissner Effect in Mechanically Loaded High-T_c Granular Superconductors

    Full text link
    Two novel phenomena in a weakly coupled granular superconductor under an applied stress are predicted which are based on recently suggested piezophase effect (a macroscopic quantum analog of the piezoelectric effect) in mechanically loaded grain boundary Josephson junctions. Namely, we consider the existence of stress induced paramagnetic moment in zero applied magnetic field (piezomagnetism) and its influence on a low-field magnetization (leading to a mechanically induced paramagnetic Meissner effect). The conditions under which these two effects can be experimentally measured in high-T_$ granular superconductors are discussed.Comment: 4 pages (REVTEX, epsf.sty), 2 PS figure

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7−ή{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) ÎŁ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), ÎŁ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level Ï”crit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the Ï”crit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB ÎŁ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure

    Magnetic field induced polarization effects in intrinsically granular superconductors

    Full text link
    Based on the previously suggested model of nanoscale dislocations induced Josephson junctions and their arrays, we study the magnetic field induced electric polarization effects in intrinsically granular superconductors. In addition to a new phenomenon of chemomagnetoelectricity, the model predicts also a few other interesting effects, including charge analogues of Meissner paramagnetism (at low fields) and "fishtail" anomaly (at high fields). The conditions under which these effects can be experimentally measured in non-stoichiometric high-T_c superconductors are discussed.Comment: 10 pages (REVTEX), 5 EPS figures; revised version accepted for publication in JET

    Chemomagnetism, magnetoconcentration effect and "fishtail" anomaly in chemically-induced granular superconductors

    Full text link
    Within a 2D model of Josephson junction arrays (created by 2D network of twin boundary dislocations with strain fields acting as insulating barrier between hole-rich domains in underdoped crystals), a few novel effects expected to occur in intrinsically granular material are predicted including: (i) Josephson chemomagnetism (chemically induced magnetic moment in zero applied magnetic field) and its influence on a low-field magnetization (chemically induced paramagnetic Meissner effect), and (ii) magnetoconcentration effect (creation of oxygen vacancies in applied magnetic field) and its influence on a high-field magnetization (chemically induced analog of "fishtail" anomaly). The conditions under which these effects can be experimentally measured in non-stoichiometric high-T_c superconductors are discussed.Comment: 5 LaTeX pages (jetpl.sty included), 3 EPS figures. To be published in JETP Letters (January 2003

    Controlled Transformation of Electrical, Magnetic and Optical Material Properties by Ion Beams

    Full text link
    Key circumstance of radical progress for technology of XXI century is the development of a technique which provides controllable producing three-dimensional patterns incorporating regions of nanometer sizes and required physical and chemical properties. Our paper for the first time proposes the method of purposeful direct transformation of the most important substance physical properties, such as electrical, magnetic, optical and others by controllable modification of solid state atomic constitution. The basis of the new technology is discovered by us effect of selective atom removing out of thin di- and polyatomic films by beams of accelerated particles. Potentials of that technique have been investigated and confirmed by our numerous experiments. It has been shown, particularly, that selective atom removing allows to transform in a controllable way insulators into metals, non-magnetics into magnetics, to change radically optical features and some other properties of materials. The opportunity to remove selectively atoms of a certain sort out of solid state compounds is, as such, of great interest in creating technology associated primarily with needs of nanoelectronics as well as many other "nano-problems" of XXI century.Comment: 22 pages, PDF, 9 figure

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file
    • 

    corecore