2 research outputs found

    Ameliorative Effects of Annona muricata Leaf Ethanol Extract on Renal Morphology of Alloxan-Induced Mice

    No full text
    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, which affects multiple tissues including kidneys. Soursop leaves (Annona muricata) are known to have antidiabetic potential, but their molecular and cellular effects are poorly characterized. We identified the bioactive compounds in soursop leaf ethanol extract (SLEE). The SLEE substances demonstrated the total alkaloid and total flavonoid contents. Twelve bioactive compounds profiles were identified in SLEE classified as alkaloid, flavonol glycoside, and monoterpenoid lactone derivatives. The SLEE treatments in mice were performed by dividing Swiss Webster mice into five groups, including negative and positive controls and three experimental groups provided with SLEE (doses 150, 300, and 600 mg/kg BW) for 14 days. The mice in the experimental groups were treated with alloxan to induce diabetes. The renal samples were stained for H&E for morphological changes. However, 600 mg/kg of SLEE showed a significant effect (p < 0.05) on the height of the Bowman’s space and prevented the tubularization of the left kidney’s glomerulus (p < 0.05). Altogether, we report no significant difference in the glomerular diameter, the thickness of the proximal convoluted tubules, the height of the Bowman’s space, and the glomerular tubularization after 14 days of treatment with SLEE

    Ameliorative Effects of <i>Annona muricata</i> Leaf Ethanol Extract on Renal Morphology of Alloxan-Induced Mice

    No full text
    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, which affects multiple tissues including kidneys. Soursop leaves (Annona muricata) are known to have antidiabetic potential, but their molecular and cellular effects are poorly characterized. We identified the bioactive compounds in soursop leaf ethanol extract (SLEE). The SLEE substances demonstrated the total alkaloid and total flavonoid contents. Twelve bioactive compounds profiles were identified in SLEE classified as alkaloid, flavonol glycoside, and monoterpenoid lactone derivatives. The SLEE treatments in mice were performed by dividing Swiss Webster mice into five groups, including negative and positive controls and three experimental groups provided with SLEE (doses 150, 300, and 600 mg/kg BW) for 14 days. The mice in the experimental groups were treated with alloxan to induce diabetes. The renal samples were stained for H&E for morphological changes. However, 600 mg/kg of SLEE showed a significant effect (p p < 0.05). Altogether, we report no significant difference in the glomerular diameter, the thickness of the proximal convoluted tubules, the height of the Bowman’s space, and the glomerular tubularization after 14 days of treatment with SLEE
    corecore