62 research outputs found
An Algorithmic Theory of Dependent Regularizers, Part 1: Submodular Structure
We present an exploration of the rich theoretical connections between several
classes of regularized models, network flows, and recent results in submodular
function theory. This work unifies key aspects of these problems under a common
theory, leading to novel methods for working with several important models of
interest in statistics, machine learning and computer vision.
In Part 1, we review the concepts of network flows and submodular function
optimization theory foundational to our results. We then examine the
connections between network flows and the minimum-norm algorithm from
submodular optimization, extending and improving several current results. This
leads to a concise representation of the structure of a large class of pairwise
regularized models important in machine learning, statistics and computer
vision.
In Part 2, we describe the full regularization path of a class of penalized
regression problems with dependent variables that includes the graph-guided
LASSO and total variation constrained models. This description also motivates a
practical algorithm. This allows us to efficiently find the regularization path
of the discretized version of TV penalized models. Ultimately, our new
algorithms scale up to high-dimensional problems with millions of variables
- …