116 research outputs found

    Transition metal oxides for high performance sodium ion battery anodes

    Get PDF
    Sodium-ion batteries (SIBs) are attracting considerable attention with expectation of replacing lithium-ion batteries (LIBs) in large-scale energy storage systems (ESSs). To explore high performance anode materials for SIBs is highly desired subject to the current anode research mainly limited to carbonaceous materials. In this study, a series of transition metal oxides (TMOs) is successfully demonstrated as anodes for SIBs for the first time. The sodium uptake/extract is confirmed in the way of reversible conversion reaction. The pseudocapacitance-type behavior is also observed in the contribution of sodium capacity. For Fe2O3anode, a reversible capacity of 386 mAh g-1at 100 mA g-1 is achieved over 200 cycles; as high as 233 mAhg-1is sustained even cycling at a large current-density of 5 A g-1

    Expression Profiling and Proteomic Analysis of JIN Chinese Herbal Formula in Lung Carcinoma H460 Xenografts

    Get PDF
    Many traditional Chinese medicine (TCM) formulae have been used in cancer therapy. The JIN formula is an ancient herbal formula recorded in the classic TCM book Jin Kui Yao Lue (Golden Chamber). The JIN formula significantly delayed the growth of subcutaneous human H460 xenografted tumors in vivo compared with the growth of mock controls. Gene array analysis of signal transduction in cancer showed that the JIN formula acted on multiple targets such as the mitogen-activated protein kinase, hedgehog, and Wnt signaling pathways. The coformula treatment of JIN and diamminedichloroplatinum (DDP) affected the stress/heat shock pathway. Proteomic analysis showed 36 and 84 differentially expressed proteins between the mock and DDP groups and between the mock and JIN groups, respectively. GoMiner analysis revealed that the differentially expressed proteins between the JIN and mock groups were enriched during cellular metabolic processes, and so forth. The ones between the DDP and mock groups were enriched during protein-DNA complex assembly, and so forth. Most downregulated proteins in the JIN group were heat shock proteins (HSPs) such as HSP90AA1 and HSPA1B, which could be used as markers to monitor responses to the JIN formula therapy. The mechanism of action of the JIN formula on HSP proteins warrants further investigation

    Leader Humility, and Subordinates’ Organizational Citizenship Behavior and Withdrawal Behavior: Exploring the Mediating Mechanisms of Subordinates’ Psychological Capital

    No full text
    As a bottom-up leadership style, leader humility has received considerable attention from researchers. Among the abundant studies revealing the positive impact of leader humility on employees’ work attitude and behaviors, there is less knowledge on how leader humility influences subordinates’ organizational citizenship behavior (OCB) and withdrawal behavior. On the basis of the social information processing theory, this study proposed a cross-level mediation model and examined the direct impact of leader humility on subordinates’ OCB and withdrawal behavior. We also further explored the underlying psychological mechanism and examined the mediating effect of psychological capital on these relationships. Using a two-wave panel design and 274 employees’ questionnaire data, the empirical analysis found that: (1) leader humility was positively related to subordinates’ OCB and negatively related to subordinates’ withdrawal behavior; (2) leader humility was positively related to subordinates’ psychological capital; and (3) psychological capital played a cross-level mediating role in the leader humility-subordinates’ OCB relationship and the leader humility-subordinates’ withdrawal behavior relationship. Theoretical and practical implications, limitations, and suggestions for future research are also discussed

    Visualization of Antimicrobial-Induced Bacterial Membrane Disruption with a Bicolor AIEgen

    No full text
    Gram-negative bacteria are difficult to kill due to their complex cell envelope, including the outer membrane (OM) and cytoplasmic membrane (CM). To monitor the membranolytic action of antimicrobials on Gram-negative bacteria would facilitate the development of effective antimicrobials. In this paper, an aggregation-induced emission luminogen (AIEgen) with microenvironment-sensitive properties was employed to indicate the interaction of antimicrobials with the OM and CM of Gram-negative bacteria. The damaged extent of OM and CM caused by antimicrobials with the change of dosage and incubation time can be visually captured based on the variation of two emission colors of IQ-Cm responding to OM-defective (green) and CM-disruptive bacteria (orange). Meanwhile, the activity assessment of antimicrobials can be easily realized within 1~2 h based on the distinct response of IQ-Cm to live and dead E. coli, which is much faster than the agar plate culture. This probe may shed light on the understanding of the interaction between the membrane-active antimicrobials and cell envelope of Gram-negative bacteria and contribute to the future development of antimicrobials

    A New Multi-Sensor Fusion Target Recognition Method Based on Complementarity Analysis and Neutrosophic Set

    No full text
    To improve the efficiency, accuracy, and intelligence of target detection and recognition, multi-sensor information fusion technology has broad application prospects in many aspects. Compared with single sensor, multi-sensor data contains more target information and effective fusion of multi-source information can improve the accuracy of target recognition. However, the recognition capabilities of different sensors are different during target recognition, and the complementarity between sensors needs to be analyzed during information fusion. This paper proposes a multi-sensor fusion recognition method based on complementarity analysis and neutrosophic set. The proposed method mainly has two parts: complementarity analysis and data fusion. Complementarity analysis applies the trained multi-sensor to extract the features of the verification set into the sensor, and obtain the recognition result of the verification set. Based on recognition result, the multi-sensor complementarity vector is obtained. Then the sensor output the recognition probability and the complementarity vector are used to generate multiple neutrosophic sets. Next, the generated neutrosophic sets are merged within the group through the simplified neutrosophic weighted average (SNWA) operator. Finally, the neutrosophic set is converted into crisp number, and the maximum value is the recognition result. The practicality and effectiveness of the proposed method in this paper are demonstrated through examples

    Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries

    No full text
    Sodium ion batteries are attracting ever-increasing attention for the applications in large/grid scale energy storage systems. However, the research on novel Na-storage electrode materials is still in its infancy, and the cycling stability, specific capacity, and rate capability of the reported electrode materials cannot satisfy the demands of practical applications. Herein, a high performance Sb2O3 anode electrochemically reacted via the reversible conversion-alloying mechanism is demonstrated for the first time. The Sb2O3 anode exhibits a high capacity of 550 mAh g-1 at 0.05 A g-1 and 265 mAh g-1 at 5 A g-1. A reversible capacity of 414 mAh g-1 at 0.5 A g-1 is achieved after 200 stable cycles. The synergistic effect involving conversion and alloying reactions promotes stabilizing the structure of the active material and accelerating the kinetics of the reaction. The mechanism may offer a well-balanced approach for sodium storage to create high capacity and cycle-stable anode materials
    • …
    corecore