149 research outputs found

    Molecular Epidemiology of Multi-Drug Resistant Acinetobacter baumannii Isolated in Shandong, China

    Get PDF
    Acinetobacter baumannii is an emerging nosocomial pathogen prevalent in hospitals worldwide. In order to understand the molecular epidemiology of multi-drug resistant (MDR) A. baumannii, we investigated the genotypes of A. baumannii isolated from ten hospitals in Shandong, China, from August 2013 to December 2013, by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antimicrobial resistance genes were analyzed by PCR and DNA sequencing. By PFGE analysis, we discovered 11 PFGE types in these ten hospitals. By MLST, we assigned these isolates to 12 sequence types (STs), 10 of which belong to the cloning complex CC92, including the prevalent ST369, ST208, ST195, and ST368. Two new STs, namely ST794 and ST809, were detected only in one hospital. All isolates of the MDR A. baumannii were resistant to carbapenem, except 2 isolates, which did not express the blaOXA-23 carbapenemase gene, indicating blaOXA-23 is the major player for carbapenem resistance. We also discovered armA is likely to be responsible for amikacin resistance, and may play a role in gentamicin and tobramycin resistance. aac(3)-I is another gene responsible for gentamicin and tobramycin resistance. In summary, we discovered that the majority of the isolates in Shandong, China, were the STs belonging to the CC92. Besides, two new STs were detected in one hospital. These new STs should be further investigated for prevention of outbreaks caused by A. baumannii

    Enhanced performance of Al<sub>2</sub>O<sub>3</sub>–SiC–C castables via in-situ formation of multi-reinforced phases by introducing surface treated composite metal powders

    Get PDF
    Al2O3–SiC–C (ASC) castables were prepared with bauxite and silicon carbide as major raw materials and introducing large amount of surface treated composite metal powders (STCMPs) as antioxidant. Their comprehensive properties were greatly improved attributed to the in situ formation of multi-reinforced phases including carbide silicon whiskers and mullite fibers in the matrix. Compared with the corresponding samples without STCMPs, the high temperature modulus of rupture of those with 6 wt% STCMPs calcined in air increased by 47.3% and with 8 wt% STCMPs calcined in reducing atmosphere increased by 220%. The retained CMOR ratio of the sample with 6 wt% STCMPs calcined in reducing atmosphere was high up to 50% after 5 cycles thermal shocks. Moreover, the oxidation index and slag erosion index of samples with 6 wt% STCMPs were decreased by 45% and 74%. This work provides a new perspective for the preparation of ASC castables with excellent high-temperature performance.</p

    Different Distribution of Core Microbiota in Upper Soil Layer in Two Places of North China Plain

    Get PDF
    Backgrounds: Soils harbor diverse bacteria, and these bacteria play important roles in soil nutrition cycling and carbon storage. Numerous investigations of soil microbiota had been performed, and the core microbiota in different soil or vegetation soil types had been described. The upper layer of soil, as a source of organic matter, is important and affected by the habitats and dominant bacteria. However, the complexity of soil environments and relatively limited information of many geographic areas had attracted great attention on comprehensive exploration of soil microbes in enormous types of soil. Methods: To reveal the core upper layer soil microbiota, soil samples from metropolis and countryside regions in the North China Plain were investigated using high-throughput sequencing strategy. Results: The results showed that the most dominant bacteria are Proteobacteria (38.34%), Actinobacteria (20.56%), and Acidobacteria (15.18%). At the genus-level, the most abundant known genera are Gaiella (3.66%), Sphingomonas (3.6%), Acidobacteria Gp6 (3.52%), and Nocardioides (2.1%). Moreover, several dominant operational taxanomy units OTUs, such as OTU_3 and OTU_17, were identified to be associated with the soil environment. Microbial distributions of the metropolis samples were different from the countryside samples, which may reflect the environments in the countryside were more diverse than in the metropolis. Microbial diversity and evenness were higher in the metropolis than in the countryside, which might due to the fact that human activity increased the microbial diversity in the metropolis. Conclusion: The upper layer soil core microbiota of the North China Plain were complex, and microbial distributions in these two places might be mainly affected by the human activity and environmental factors, not by the distance. Our data highlights the upper layer soil core microbiota in North China Plain, and provides insights for future soil microbial distribution studies in central China

    Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry

    Get PDF
    In the past, the primary emphasis of livestock and poultry breeding was mainly on improving the growth rate, meat production efficiency and disease resistance. However, the improvement of meat quality has become a major industrial focus due to the ongoing advancements in livestock and poultry breeding. Skeletal muscles consist of multinucleated myofibers formed through the processes of myoblast proliferation, differentiation and fusion. Muscle fibers can be broadly classified into two main types: slow-twitch (Type I) and fast-twitch (Type II). Fast-twitch fibers can be further categorized into Type IIa, Type IIx, and Type IIb. The proportion of Type I and Type IIa muscle fibers is positively associated with meat quality, while the presence of Type IIb muscle fibers in skeletal muscle tissue is inversely related to meat quality. Consequently, muscle fiber composition directly influences meat quality. The distribution of these fiber types within skeletal muscle is governed by a complex network, which encompasses numerous pivotal regulators and intricate signaling pathways. This article aims to succinctly outline the parameters utilized for assessing meat quality, elucidate the relationship between muscle fiber composition and meat quality as well as elaborate on the relevant genetic factors and their molecular mechanisms that regulate muscle fiber types in livestock and poultry. This summary will enrich our comprehension of how to improve meat quality in livestock and poultry, providing valuable insights for future improvements
    • …
    corecore