30 research outputs found

    The distribution and characterization of HNK-1 antigens in the developing avian heart

    Get PDF
    The heart originates from splanchnic mesoderm and to a lesser extent from neural crest cells. The HNK-1 monoclonal antibody is a marker for early migrating neural crest cells, but reacts also with structures which are not derived from the neural crest. We investigated whether heart structures are HNK-1 positive before neural crest cells colonize these target tissues. To that end, we determined the HNK-1 antigen expression in the developing avian heart on immunohistochemical sections and on Western blots. The HNK-1 immunoreactivity in the developing chick heart is compared with data from literature cm the localization of neural crest cells in chick/quail chimeras. Structures with neural crest contribution, including parts of the early outflow tract and the related endocardial cushions, the primordia of the semilunar valve leaflets and the aorticopulmonary septum were HNK-1 positive. Furthermore, other structures were HNK-1 positive, such as the atrioventricular cushions, the wall of the sinus venosus at stage HH 15 through 21, parts of the endocardium at E3, parts of the myocardium at E6, and the extracellular matrix in the myocardial base of the semilunar valves at E14. HNK-1 expression was particularly observed in morphologically dynamic regions such as the developing valves, the outflow tract cushion, the developing conduction system and the autonomie nervous system of the heart. We observed that atrioventricular endocardial cushions are HNK-1 positive. We conclude that: a HNK-1 immunoreactivity does not always coincide with the presence of neural crest cells or their derivatives; (2) the outflow tract cushions and atrioventricular endocardial cushions are HNK-1 positive before neural crest cells are expected (stage HH 19) to enter the endocardial cushions of the outflow tract; (3) the observed spatio-temporal HNK-1 patterns observed in the developing heart correspond with various HNK-1 antigens. Apart from a constant pattern of HNK-1 antigens during development, stage-dependent HNK-1 antigens were also found

    The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development

    Get PDF
    Recent loss-of-function studies in mice show that the transcription factor GATA6 is important for visceral endoderm differentiation. It is also expressed in early bronchial epithelium and the observation that this tissue does not receive any contribution from Gata6 double mutant embryonic stem (ES) cells in chimeric mice suggests that GATA6 may play a crucial role in lung development. The aim of this study was to determine the role of GATA6 in fetal pulmonary development. We show that Gata6 mRNA is expressed predominantly in the developing pulmonary endoderm and epithelium, but at E15.5 also in the pulmonary mesenchyme. Blocking or depleting GATA6 function results in diminished branching morphogenesis both in vitro and in vivo. TTF1 expression is unaltered in chimeric lungs whereas SPC and CC10 expression are attenuated in abnormally branched areas of chimeric lungs. Chimeras generated in a ROSA26 background show that endodermal cells in these abnormally branched areas are derived from Gata6 mutant ES cells, implicating that the defect is intrinsic to the endoderm. Taken together, these data demonstrate that GATA6 is not essential for endoderm specification, but is required for normal branching morphogenesis and late epithelial cell differentiation

    Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility

    Get PDF
    We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants repo

    Positional mapping of loci in the DiGeorge critical region at chromosome 22q11 using a new marker (D22S183)

    Get PDF
    The majority of patients with DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS) and a minority of patients with non-syndromic conotruncal heart defects are hemizygous for a region of chromosome 22q11. The chromosomal region that is commonly deleted is larger than 2 Mb. It has not been possible to narrow the smallest region of overlap (SRO) of the deletions to less than ca 500 kb, which suggests that DGS/VCFS might be a contiguous gene syndrome. The saturation cloning of the SRO is being carried out, and one gene (TUPLE1) has been identified. By using a cosmid probe (M51) and fluorescence in situ hybridization, we show here that the anonymous DNA marker locus D22S183 is within the SRO, between TUPLE1 and D22S75 (probe N25). A second locus with weak homology to D22S183, recognized by cosmid M56, lies immediately outside the common SRO of the DGS and VCFS deletions, but inside the SRO of the DGS deletions. D22S183 sequences are strongly conserved in primates and weaker hybridizing signals are found in DNA of other mammalian species; no transcripts are however detected in polyA+ RNA from various adult human organs. Probe M51 allows fast reliable screening for 22q11 deletions using fluorescence in situ hybridization. A deletion was found in 11 out of 12 DGS patients and in 3 out of 7 VCFS patients. Two patients inherited the deletion from a parent with mild (atypical) symptoms

    Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore‐, mid‐ and hindgut

    Get PDF
    The vagal neural crest adjacent to the first seven somites gives rise to both ganglionic and ectomesenchymal derivatives. Ganglionic derivatives are the neurons and supportive cells of the enteric nervous system (ENS), cardiac, and dorsal root ganglia. Ectomesenchymal derivatives are cells in the cardiac outflow tract and the mesenchymal components of thymus and parathyroids. Ectomesenchymal derivatives are formed by a segment of the vagal neural crest, from the level of the otic vesicle down to the caudal boundary of the third somite, called the cardiac neural crest. We performed neural crest ablations to study regional differences within the avian vagal neural crest with regard to the formation of the ENS. Ablation of the entire vagal neural crest from the mid‐otic vesicle down to the seventh somite plus the nodose placode resulted in the absence of ganglia in the midgut (jejunum and ileum) and hindgut (colon). The foregut (esophagus, proventriculus, gizzard, and duodenum) was normally innervated. After ablation of the vagal neural crest adjacent to somites 3–5, ganglia were absent in the hindgut. Ablations of vagal neural crest not including this segment had no effect on the formation of the ENS. We surmise that the innervation of the hindgut in vivo depends specifically on the neural crest adjacent to somites 3–5, whereas innervation of the midgut can be accomplished by all segments within the vagal neural crest. The foregut can also be innervated by a source outside the vagal neural crest. To study intrinsic differences between various vagal neural crest segments regarding ENS formation, we performed chorioallantoic membrane cocultures of segments of quail vagal neural anlage and E4 chicken hindgut. We found that all vagal neural crest segments were able to give rise to enteric ganglia in the hindgut. When the neural crest of somites 6 and 7 was included in the segment, we also found melanocytes in the hindgut, suggesting that this segment is more related to trunk neural crest. Furthermore, we found that the vagal neural anlage from older embryos (>18 somites) showed an increased potential to form enteric ganglia. This suggests that vagal neural crest cells that have been in prolonged contact with the neural tube in vivo, because of either late emigration or delayed migration, have an increased probability to form enteric ganglia

    Completeness of pathology reports in stage II colorectal cancer

    Get PDF
    Introduction: The completeness of the pathological examination of resected colon cancer specimens is important for further clinical management. We reviewed the pathological reports of 356 patients regarding the five factors (pT-stage, tumor differentiation grade, lymphovascular invasion, tumor perforation and lymph node metastasis status) that are used to identify high-risk stage II colon cancers, as well as their impact on overall survival (OS). Methods: All patients with stage II colon cancer who were included in the first five years of the MATCH study (1 July 2007 to 1 July 2012) were selected (n = 356). The hazard ratios of relevant risk factors were calculated using Cox Proportional Hazards analyses. Results: In as many as 69.1% of the pathology reports, the desired information on one or more risk factors was considered incomplete. In multivariable analysis, age (HR: 1.07, 95%CI 1.04–1.10, p < .001), moderately- (HR: 0.35, 95%CI 0.18–0.70, p = .003) and well (HR 0.11, 95%CI 0.01–0.89, p = .038) differentiated tumors were significantly associated with OS. Conclusions: Pathology reports should better describe the five high-risk factors, in order to enable proper patient selection for further treatment. Chemotherapy may be offered to stage II patients only in select instances, yet a definitive indication is still unavailable
    corecore