21 research outputs found

    Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation

    Get PDF
    BACKGROUND: Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. METHODS AND RESULTS: Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca(2+) amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca(2+)-transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca(2+)-current reduction), cellular Ca(2+)-handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. CONCLUSIONS: These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate

    HSPB1, HSPB6, HSPB7 and HSPB8 Protect against RhoA GTPase-Induced Remodeling in Tachypaced Atrial Myocytes

    Get PDF
    BACKGROUND: We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. METHODS AND RESULTS: Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca²⁺ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. CONCLUSION: Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family

    Reviving the protein quality control system: Therapeutic target for cardiac disease in the elderly

    Full text link
    It has been firmly established that ageing constitutes a principal risk factor for cardiac disease. Currently, the underlying mechanisms of ageing that contribute to the initiation or acceleration of cardiac disease are essentially unresolved. Prevailing theories of ageing center on the loss of cellular protein homeostasis, by either design (genetically) or "wear and tear" (environmentally). Either or both ways, the normal protein homeostasis in the cell is affected, resulting in aberrant and misfolded proteins. Should such misfolded proteins escape the protein quality control (PQC) system, they become proteotoxic and accelerate the loss of cellular integrity. Impairment of PQC plays a prominent role in the pathophysiology of ageing-related neurodegenerative disorders such as Parkinson's, Huntington׳s, and Alzheimer׳s disease. The concept of an impaired PQC driving ageing-related diseases has recently been expanded to cardiac diseases, including atrial fibrillation, cardiac hypertrophy, and cardiomyopathy. In this review, we provide a brief overview of the PQC system in relation to ageing and discuss the emerging concept of the loss of PQC in cardiomyocytes as a trigger for cardiac disease. Finally, we discuss the potential of boosting the PQC system as an innovative therapeutic target to treat cardiac disease in the elderly

    Farnesol-Induced Apoptosis in Candida albicans▿ †

    Full text link
    Farnesol, a precursor in the isoprenoid/sterol pathway, was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. Farnesol is involved in the inhibition of germination and biofilm formation by C. albicans and can be cytotoxic at certain concentrations. In addition, we have shown that farnesol can trigger apoptosis in mammalian cells via the classical apoptotic pathways. In order to elucidate the mechanism behind farnesol cytotoxicity in C. albicans, the response to farnesol was investigated, using proteomic analysis. Global protein expression profiles demonstrated significant changes in protein expression resulting from farnesol exposure. Among the downregulated proteins were those involved in metabolism, glycolysis, protein synthesis, and mitochondrial electron transport and the respiratory chain, whereas proteins involved in folding, protection against environmental and oxidative stress, actin cytoskeleton reorganization, and apoptosis were upregulated. Cellular changes that accompany apoptosis (regulated cell death) were further analyzed using fluorescent microscopy and gene expression analysis. The results indicated reactive oxygen species accumulation, mitochondrial degradation, and positive terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) in the farnesol-exposed cells concurrent with increased expression of antioxidant-encoding and drug response genes. More importantly, the results demonstrated farnesol-induced upregulation of the caspase gene MCA1 and the intracellular presence of activated caspases. In conclusion, this study demonstrated that farnesol promotes apoptosis in C. albicans through caspase activation, implying an important physiological role for farnesol in the fungal cell life cycle with important implications for adaptation and survival

    Image quality and diagnostic performance of dual-energy CT with spectral imaging in hepatocellular carcinoma: radiologic-pathologic correlation.

    Full text link
    Abstract Purpose: To retrospectively evaluate image quality and diagnostic accuracy of dual-energy CT (DECT) in the diagnosis of hepatocellular carcinoma (HCC) in a series of transplanted cirrhotic patients. Materials and Methods: Institutional Review Board approval was obtained. The study included all consecutive cirrhotic patients who underwent liver transplantation (LTx) <120 days after multiphasic DECT with spectral imaging in late arterial phase from March 2013 to December 2014. Three sets of images (A: 140kVp polychromatic; B: 70keV monochromatic; C: “iodine-based” material decomposition images) were reviewed, assessing image quality (scale 1-5), lesion conspicuity (scale 1-3) and lesion-to-liver contrast-to-noise ratio (CNR). Using the pathological findings on the explanted livers as gold standard, sensitivity, specificity, positive and negative predictive values and accuracy were assessed and compared by DeLong method. Results: Fifty-three patients (41 males; mean age 54.4 ± 8.2 years) were included, with 31 HCC nodules identified at pathology in 23 (43.4%) patients (mean diameter 19.1 ± 8.5 mm). Group B showed significantly higher image quality (4.91 ± 0.35) compared to groups A (4.83 ± 0.54; P=.04) and C (4.70 ± 0.57; P=.0035). Lesion conspicuity scores were 2.58 ± 0.65, 2.83 ± 0.48 and 2.92 ± 0.28 for groups A, B and C, respectively; the difference was significant comparing group A and C (P=.03). CNR was significantly higher in group C (4.72 ± 2.94) compared to groups A (2.47 ± 1.5; P<.0001) and B (3.44 ± 1.63; P=.02). On the nodule-by-nodule and patient-by-patient analyses, group C had the highest diagnostic accuracy (area-under-the-curve, AUC 0.90 and 0.96, respectively), compared to groups A (AUC 0.81 and 0.87) and B (AUC 0.87 and 0.92); the difference was significant comparing groups A and C (P=.009 and .039). Conclusions: DECT with spectral imaging provides high quality images; by increasing CNR, iodine-based images are able to increase sensitivity in HCC diagnosis with >90% diagnostic accuracy

    Application of kinomic array analysis to screen for altered kinases in atrial fibrillation remodeling

    Get PDF
    BACKGROUND Dysregulation of protein kinase-mediated signaling is an early event in many diseases, including the most common clinical cardiac arrhythmia, atrial fibrillation (AF). Kinomic profiling represents a promising technique to identify candidate kinases. OBJECTIVE In this study we used kinomic profiling to identify kinases altered in AF remodeling using atrial tissue from a canine model of AF (atrial tachypacing). METHODS Left atrial tissue obtained in a previous canine study was used for kinomic array (containing 1024 kinase pseudosubstrates) analysis. Three groups of dogs were included: nonpaced controls and atrial tachypaced dogs, which were contrasted with geranylgeranylacetone-treated dogs with AF, which are protected from AF promotion, to enhance specificity of detection of putative kinases. RESULTS While tachypacing changed activity of 50 kinases, 40 of these were prevented by geranylgeranylacetone and involved in differentiation and proliferation (SRC), contraction, metabolism, immunity, development, cell cycle (CDK4), and survival (Akt). Inhibitors of Akt (MK2206) and CDK4 (PD0332991) and overexpression of a dominant-negative CDK4 phosphorylation mutant protected against tachypacing-induced contractile dysfunction in HL-1 cardiomyocytes. Moreover, patients with AF show down- and upregulation of SRC and Akt phosphorylation, respectively, similar to findings of the kinome array. CONCLUSION Contrasting kinomic array analyses of controls and treated subjects offer a versatile tool to identify kinases altered in atrial remodeling owing to tachypacing, which include Akt, CDK4, and SRC. Ultimately, pharmacological targeting of altered kinases may offer novel therapeutic possibilities to treat clinical AF

    RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response

    Get PDF
    Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1), which binds to conserved heat shock elements (HSE) in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP). Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli. Methods and Results Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A) promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress. Conclusion These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli

    Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation

    Full text link
    BACKGROUND: Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models. METHODS AND RESULTS: Tachypacing of HL-1 atrial cardiomyocytes and Drosophila pupae hearts significantly impaired contractile function (amplitude of Ca(2+) transients and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in α-tubulin deacetylation, depolymerization, and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant-negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears α-tubulin deacetylase activity. Furthermore, in vivo treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electric remodeling (action potential duration shortening, L-type Ca(2+) current reduction, AF promotion) and cellular Ca(2+)-handling/contractile dysfunction (loss of Ca(2+) transient amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total α-tubulin. CONCLUSIONS: AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of α-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. In vivo inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF
    corecore