8,465 research outputs found
Drug-induced pemphigoid and linear IgA disease
Drug-induced pemphigoid (DIBP) and drug-induced linear IgA bullous dermatosis (DILAD) can be difficult to differentiate from idiopathic bullous pemphigoid (BP) or mucous membrane pemphigoid (MMP), respectively linear IgA disease (LAD). Possible absence or only minor differences in clinical, histopathologic and immunopathologic features complicate the recognition. However, differentiation can be of major importance because of a different approach, prognosis, and treatment. Diagnosis is mainly based on a clear time-relation between start of the suspected drug(s) and onset of the lesions, but can be complicated by polypharmacy and comorbidity, especially in the elderly. After withdrawal of the culprit drug, both DIBP and DILAD tend to be self-limiting. With the introduction of immune checkpoint inhibitors in treatment of malignancies, pemphigoid variants may present as an immune-related adverse event, leading to a dilemma in treatment choices.</p
Atom lithography without laser cooling
Using direct-write atom lithography, Fe nanolines are deposited with a pitch
of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to
6 nm. These values are achieved by relying on geometrical collimation of the
atomic beam, thus without using laser collimation techniques. This opens the
way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure
Deceleration and electrostatic trapping of OH radicals
A pulsed beam of ground state OH radicals is slowed down using a Stark
decelerator and is subsequently loaded into an electrostatic trap.
Characterization of the molecular beam production, deceleration and trap
loading process is performed via laser induced fluorescence detection inside
the quadrupole trap. Depending on details of the trap loading sequence,
typically OH () radicals are trapped at a density
of around cm and at temperatures in the 50-500 mK range. The 1/e
trap lifetime is around 1.0 second.Comment: 4 pages, 3 figure
Vertical bone augmentation and regular implants versus short implants in the vertically deficient posterior mandible:a systematic review and meta-analysis of randomized studies
Item does not contain fulltextThe aim of this study was to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing the outcomes of short dental implants (≤7mm) versus vertical bone augmentation followed by regular dental implants (>7mm) in the deficient posterior mandible. In total, eight RCTs (six using interpositional sandwich grafting and two using a guided bone regeneration technique) were reported in 17 articles at different time points. In the meta-analysis of the sandwich group, the relative risk (RR) for implant loss at 1year was in favour of short implants (RR 0.41, P=0.02), while no significant difference was found at 3 years (RR 0.65, P=0.43), 5 years (RR 1.08, P=0.86), or 8 years (RR 1.53, P=0.52). The risk of complications was in favour of short implants (RR 0.34, P=0.0002), as was the mean difference in marginal bone resorption after 1 year (-0.09mm, P=0.17), 3 years (-0.32mm, P<0.00001), 5 years (-0.65mm, P<0.00001), and 8 years (-0.88, P<0.00001). The mean residual osseointegration length of the implants was between 2.94mm and 4.44mm in the short implants group and between 7.97mm and 8.62mm in the regular implants group after 5 years. In conclusion, in the deficient atrophic posterior mandible, short implants and regular implants demonstrate comparable outcomes within the first 5 years. Patients who are fit for surgery should be informed about the risks and benefits of both options
Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors
We present time-resolved photoluminescence measurements on two series of
oligo-p-phenylenevinylene materials that self-assemble into supramolecular
nanostructures with thermotropic reversibility in dodecane. One set of
derivatives form chiral, helical stacks while the second set form less
organised, frustrated stacks. Here we study the effects of supramolecular
organisation on the resonance energy transfer rates. We measure these rates in
nanoassemblies formed with mixed blends of oligomers and compare them with the
rates predicted by Foerster theory. Our results and analysis show that control
of supramolecular order in the nanometre lengthscale has a dominant effect on
the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy
- …