11,809 research outputs found
The Base Engine for Solar Stirling Power
A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described
Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in BiSe with high charge-carrier density
Topological insulators are ideally represented as having an insulating bulk
with topologically protected, spin-textured surface states. However, it is
increasingly becoming clear that these surface transport channels can be
accompanied by a finite conducting bulk, as well as additional topologically
trivial surface states. To investigate these parallel conduction transport
channels, we studied Shubnikov-de Haas oscillations in BiSe thin films,
in high magnetic fields up to 30 T so as to access channels with a lower
mobility. We identify a clear Zeeman-split bulk contribution to the
oscillations from a comparison between the charge-carrier densities extracted
from the magnetoresistance and the oscillations. Furthermore, our analyses
indicate the presence of a two-dimensional state and signatures of additional
states the origin of which cannot be conclusively determined. Our findings
underpin the necessity of theoretical studies on the origin of and the
interplay between these parallel conduction channels for a careful analysis of
the material's performance.Comment: Manuscript including supplemental materia
Helicity Amplitudes for Charmonium Production in Hadron-Hadron and Photon-Hadron Collisions
We present the gluon-gluon and photon-gluon helicity amplitudes for color
singlet and octet charmonium production in polarized and unpolarized
hadron-hadron and photon-hadron collisions.Comment: 11 pages amstex no figure
Magnetic imaging with an ensemble of Nitrogen Vacancy centers in diamond
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in
the solid-state which specific spin properties can be efficiently used as a
sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of
the NV center levels which can be measured using Optically Detected Magnetic
Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV
centers in order to quantitatively map the vectorial structure of a magnetic
field produced by a sample close to the surface of a CVD diamond hosting a thin
layer of NV centers. The reconstruction of the magnetic field is based on a
maximum-likelihood technique which exploits the response of the four intrinsic
orientations of the NV center inside the diamond lattice. The sensitivity
associated to a 1 {\mu}m^2 area of the doped layer, equivalent to a sensor
consisting of approximately 10^4 NV centers, is of the order of 2
{\mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm,
limited by the numerical aperture of the optical microscope which is used to
collect the photoluminescence of the NV layer. The versatility of the sensor is
illustrated by the accurate reconstruction of the magnetic field created by a
DC current inside a copper wire deposited on the diamond sample.Comment: 11 pages, 5 figures, figure 4 added, results unchange
Competition between Spin-Orbit Interaction and Zeeman Coupling in Rashba 2DEGs
We investigate systematically how the interplay between Rashba spin-orbit
interaction and Zeeman coupling affects the electron transport and the spin
dynamics in InGaAs-based 2D electron gases. From the quantitative analysis of
the magnetoconductance, measured in the presence of an in-plane magnetic field,
we conclude that this interplay results in a spin-induced breaking of time
reversal symmetry and in an enhancement of the spin relaxation time. Both
effects, due to a partial alignment of the electron spin along the applied
magnetic field, are found to be in excellent agreement with recent theoretical
predictions.Comment: 4 figures and 4 page
Fabrication and electrical transport properties of embedded graphite microwires in a diamond matrix
Micrometer width and nanometer thick wires with different shapes were
produced \approx 3~\upmum below the surface of a diamond crystal using a
microbeam of He ions with 1.8~MeV energy. Initial samples are amorphous and
after annealing at ~K, the wires crystallized into a
graphite-like structures, according to confocal Raman spectroscopy
measurements. The electrical resistivity at room temperature is only one order
of magnitude larger than the in-plane resistivity of highly oriented pyrolytic
bulk graphite and shows a small resistivity ratio(). A small negative magnetoresistance below ~K was
measured and can be well understood taking spin-dependent scattering processes
into account. The used method provides the means to design and produce
millimeter to micrometer sized conducting circuits with arbitrary shape
embedded in a diamond matrix.Comment: 12 pages, 5 figures, to be published in Journal of Physics D: Applied
Physics (Feb. 2017
Preparation, properties, and applications of magnetic hematite microparticles
Hematite microparticles are becoming increasingly important components in the soft matter field. The remarkable combination of magnetic and photocatalytic properties that characterize them, coupled with the variety of uniform and monodisperse shapes that they can be synthesized in, makes them a one of a kind colloidal model system. Thanks to these properties, hematite microparticles have been recently applied in several important soft matter applications, spanning from novel colloidal building blocks for self-assembly to necessary tools to investigate and understand fundamental problems. In this review article we provide a detailed overview of the traditional methods available for the preparation of hematite microparticles of different shapes, devoting special attention on some of the most common hiccups that could hider a successful synthesis. We furthermore review the particles' most important physico-chemical properties and their most relevant applications in the soft matter field.</p
- âŠ