61 research outputs found

    Effects of different soil water holding capacities on vegetable residue return and its microbiological mechanism

    Get PDF
    With the gradual expansion of the protected vegetable planting area, dense planting stubbles and increasing labor cost, the treatment of vegetable residues has become an urgent problem to be solved. Soil bacterial community structure plays an important role in vegetable residue return and is susceptible to environmental changes. Therefore, understanding the influences of different soil water holding capacities on plant residue decomposition and soil bacterial communities is important for biodegradation. During the whole incubation period, the weight loss ratio of plant residue with 100% water holding capacity was 69.60 to 75.27%, which was significantly higher than that with 60% water holding capacity in clay and sandy soil, indicating that high water holding capacity promoted the decomposition of plant residue. The degradation of lignin and cellulose was also promoted within 14 days. Furthermore, with the increase in soil water holding capacity, the contents of NH4+ increased to 5.36 and 4.54 times the initial value in the clay and sandy soil, respectively. The increase in napA and nrfA resulted in the conversion of NO3– into NH4+. The increase in water holding capacity made the bacterial network structure more compact and changed the keystone bacteria. The increase in water holding capacity also increased the relative abundance of Firmicutes at the phylum level and Symbiobacterium, Clostridium at the genus level, which are all involved in lignin and cellulose degradation and might promote their degradation. Overall, these findings provide new insight into the effects of different soil water holding capacities on the degradation of plant residues in situ and the corresponding bacterial mechanisms

    Research on controllable ozone oxidation on diamond surface

    No full text
    In recent years, there have been more and more researches on the surface modification of diamonds, however, the exact types and quantities of oxygen-related species on diamond surfaces and the method to control the condition parameters to obtain as many oxygen-containing groups as possible have been rarely studied so far. Therefore, in this work, we focused on these questions. And we find out that ozone oxidation would not affect the overall crystal structure and morphology of diamonds. Besides, changing oxidation time and ozone concentration would significantly influence the density of hydroxyl groups, which is manifested as a change of oxygen content. In order to make the hydroxyl density on diamond surface reach a high level (3.12 × 1014 units/cm2), so that diamonds can be better combined with the resin matrix, the ozone oxidation time should be 15 min, and the ozone concentration should be 115 g•m−3. And under these conditions, the thermal conductivity of diamond and polysiloxane composites can reach 8.02 W/mK

    Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions

    No full text
    Studying interactions between lysosomes and mitochondria in living cells is difficult due to the limitations of existing probes. Here, the authors develop new cell-permeable fluorescent probes to image the dynamics of lysosomes and their physical interactions with mitochondria using super-resolution microscopy

    Increased activated regulatory T cells proportion correlate with the severity of idiopathic pulmonary fibrosis

    No full text
    Abstract Background Regulatory T cells (Tregs) are crucial in maintaining immune tolerance and immune homeostasis, but their role in idiopathic pulmonary fibrosis (IPF) is unclear. This study was designed to explore the role of Tregs in IPF. Methods Percentages of Tregs and their subpopulations in peripheral blood (PB) and bronchoalveolar lavage (BAL) samples were determined by flow cytometry in 29 patients with IPF, 19 patients with primary Sjögren’s syndrome-related interstitial pneumonia (pSS-IP), and 23 healthy controls (HCs). Results In peripheral blood, no difference was found in CD4+CD25+Foxp3+ Treg percentages among patients with IPF, pSS-IP, or HCs. However, activated Treg (aTreg) fractions among CD4+ T cells increased significantly in IPF compared with pSS-IP or HCs. Being consistent with the result from the PB, aTreg fractions among CD4+ T cells in IPF also increased significantly compared with pSS-IP or HCs, accompanied by increased fraction III compared with HCs in BAL. IPF patients had lower levels of resting Tregs (rTregs) from the thymus than did HCs, whereas aTreg levels originating from the thymus did not significantly differ from HCs. Both rTregs and aTregs proliferated in IPF, with aTregs being more proliferative than rTregs. Both rTregs and aTregs significantly inhibited proliferation of CD4+ T lymphocytes in vitro. The percentage of aTregs was correlated negatively with predicted diffusing capacity values for carbon monoxide and positively with GAP index in IPF. Conclusions Our study showed the imbalance between subpopulations of Tregs in IPF. Increased aTregs proportion in the peripheral blood correlated inversely with disease severity

    Serum concentrations of Krebs von den Lungen-6, surfactant protein D, and matrix metalloproteinase-2 as diagnostic biomarkers in patients with asbestosis and silicosis: a case–control study

    No full text
    Abstract Background Asbestosis and silicosis are progressive pneumoconioses characterized by interstitial fibrosis following exposure to asbestos or silica dust. We evaluated the potential diagnostic biomarkers for these diseases. Methods The serum concentrations of Krebs von den Lungen-6 (KL-6), surfactant protein D (SP-D), and matrix metalloproteinase-2 (MMP-2), MMP-7, and MMP-9 were measured in 43 patients with asbestosis, 45 patients with silicosis, 40 dust-exposed workers (DEWs) without pneumoconiosis, and 45 healthy controls (HCs). Chest high-resolution computed tomography (HRCT) images were reviewed by experts blinded to the clinical data. According to the receiver operating characteristic (ROC) curve, the ideal level of each biomarker and its diagnostic sensitivity were obtained. Results The serum KL-6 and MMP-2 concentrations were highest in patients with asbestosis, particularly in comparison with those in DEWs and HCs (P<0.05). The serum SP-D concentration was significantly higher in patients with asbestosis than in patients with silicosis, DEWs, and HCs (P<0.01), whereas no significant difference was noted among patients with silicosis, DEWs, and HCs. No significant difference in the serum MMP-7 or -9 concentration was found among patients with asbestosis, patients with silicosis, DEWs, or HCs. Among patients with asbestosis, the serum KL-6 concentration was significantly correlated with the lung fibrosis scores on HRCT and negatively correlated with the forced vital capacity (FVC) % predicted and diffusing capacity of the lung for carbon monoxide (DLCO) % predicted. The serum SP-D and MMP-2 concentrations were negatively correlated with the DLCO % predicted (all P<0.05). The order of diagnostic accuracy according to the ROC curve was KL-6, SP-D, and MMP-2 in patients with asbestosis alone and in the combination of both patients with asbestosis and those with silicosis. The combination of all three biomarkers may increase the possibility of diagnosing asbestosis (sensitivity, 93%; specificity, 57%) and both asbestosis and silicosis (sensitivity, 83%; specificity, 62%). Conclusions KL-6, SP-D, and MMP-2 are available biomarkers for the adjuvant diagnosis of asbestosis and silicosis. The combination of all three biomarkers may improve the diagnostic sensitivity for asbestosis and silicosis

    Graphenelated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan

    No full text
    3D tin-based foams with tailorable pore structures are developed through a graphenelated freeze-drying approach. Pore structure effects on the electrochemical properties of the G/SnO @C composite foam are investigated. Further the carbon coating endows the foam-like nanocomposite with superior cycling stability and rate capability

    Paleoenvironment of the Lower Ordovician Meitan Formation in the Sichuan Basin and Adjacent Areas, China

    No full text
    The quality of hydrocarbon source rocks is affected by the sedimentary paleoenvironment. A paleoenvironment with anoxia and a high paleoproductivity is beneficial to source rocks. The paleoenvironment of the Lower Ordovician Meitan Formation of the Sichuan Basin and its adjacent areas is lacking, restricting the oil and gas exploration of the Ordovician in the Sichuan Basin and its adjacent areas. In this paper, the content of major and trace elements of 50 samples was tested to clarify the paleoenvironment of the Meitan Formation. The paleoclimate, paleosalinity, paleoredox, and paleoproductivity during the deposition of the Meitan Formation were analyzed. The control effect of the paleoenvironment on the development of source rocks was clarified, and the favorable paleoenvironment for source rock development was pointed out. The results show that the paleoenvironment of the Meitan Formation has the following characteristics: humidity, brackish water, oxygen depletion, anoxia environment, and high paleoproductivity. These characteristics are conducive to the development of poor and moderate source rocks. The source rocks of the Meitan Formation were developed in the north, west, and south of the Sichuan Basin and its adjacent areas. The organic matter of the source rocks is mainly typed II1 kerogen, and the quality is evaluated as poor-medium source rocks having the potential of generating oil and gas. This study can provide fundamental parameters for the further exploration of Ordovician petroleum

    Paleoenvironment of the Lower Ordovician Meitan Formation in the Sichuan Basin and Adjacent Areas, China

    No full text
    The quality of hydrocarbon source rocks is affected by the sedimentary paleoenvironment. A paleoenvironment with anoxia and a high paleoproductivity is beneficial to source rocks. The paleoenvironment of the Lower Ordovician Meitan Formation of the Sichuan Basin and its adjacent areas is lacking, restricting the oil and gas exploration of the Ordovician in the Sichuan Basin and its adjacent areas. In this paper, the content of major and trace elements of 50 samples was tested to clarify the paleoenvironment of the Meitan Formation. The paleoclimate, paleosalinity, paleoredox, and paleoproductivity during the deposition of the Meitan Formation were analyzed. The control effect of the paleoenvironment on the development of source rocks was clarified, and the favorable paleoenvironment for source rock development was pointed out. The results show that the paleoenvironment of the Meitan Formation has the following characteristics: humidity, brackish water, oxygen depletion, anoxia environment, and high paleoproductivity. These characteristics are conducive to the development of poor and moderate source rocks. The source rocks of the Meitan Formation were developed in the north, west, and south of the Sichuan Basin and its adjacent areas. The organic matter of the source rocks is mainly typed II1 kerogen, and the quality is evaluated as poor-medium source rocks having the potential of generating oil and gas. This study can provide fundamental parameters for the further exploration of Ordovician petroleum
    • …
    corecore