23 research outputs found

    Delineation of the healthy rabbit kidney by immunohistochemistry - A technical note.

    Full text link
    Pre-clinical animal models are needed to investigate and study kidney injuries and diseases. The rabbit kidney model is frequently used because various important parameters can be assessed with it. For example, histology and immunohistochemistry are indispensable as tissue morphology and composition can be investigated qualitatively as well as quantitatively. Here, different histological and immunohistochemical stainings were performed in the rabbit healthy naïve kidney tissue. First, overnight formalin fixation followed by paraffin embedding and cryopreservation with a subsequent 10-minute formalin fixation prior to staining were compared. Cryosections showed a more pronounced staining pattern, with clear borders at low magnifications, but blurred borders at higher magnifications. Then, antigen retrieval (AR) for paraffin embedded sections resulted in more prominent corresponding signals compared to stainings without AR. Moreover, several advantages and disadvantages of chromogenic versus immunofluorescence stainings were considered. Chromogenic staining was advantageous compared to immunofluorescence for collagen I and III, and to a minor degree for fibronectin. Finally, distinct structures, such as the pelvis, the calices, the glomeruli and tubuli, were stained in serial sections with diverse immunohistochemical stainings in order to delineate their composition. The following stainings were performed: standard Haematoxylin&Eosin and Elastica van Gieson staining, collagen I, collagen III, fibronectin, α-SMA, ki-67 and protease-activated receptor-2 (PAR-2). While chromogenic stainings of collagen I and collagen III were particularly useful to depict kidney structures in paraffin sections compared with cryosections, cryosections immunofluorescently stained for α-SMA were superior to paraffin sections, particularly at higher magnifications. With regard to specific structures, we found renal vessel walls positive for fibronectin and α-SMA, while the Bowman's capsule was only positive for fibronectin and α-SMA showed only tiny spots. The mesangial cells of the glomeruli and the distal tubuli were PAR-2 positive, while the proximal tubuli were PAR-2 negative

    Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegration

    Full text link
    Silicone is an important material family used for various medical implants. It is biocompatible, but its bioinertness prevents cell attachment, and thus tissue biointegration of silicone implants. This often results in constrictive fibrosis and implant failure. Bioglass 45S5® (BG) could be a suitable material to alter the properties of silicone, render it bioactive and improve tissue integration. Therefore, BG micro- or nanoparticles were blended into medical-grade silicone and 2D as well as 3D structures of the resulting composites were analyzed in ovo by a chick chorioallantoic membrane (CAM) assay. The biomechanical properties of the composites were measured and the bioactivity of the composites was verified in simulated body fluid. The bioactivity of BG-containing composites was confirmed visually by the formation of hydroxyapatite through scanning electron microscopy as well as by infrared spectroscopy. BG stiffens as prepared non-porous composites by 13% and 36% for micro- and nanocomposites respectively. In particular, after implantation for 7 days, the Young's modulus had increased significantly from 1.20 ± 0.01 to 1.57 ± 0.03 MPa for microcomposites and 1.44 ± 0.03 to 1.69 ± 0.29 MPa to for nanocpmosites. Still, the materials remain highly elastic and are comparably soft. The incorporation of BG into silicone overcame the bioinertness of the pure polymer. Although the overall tissue integration was weak, it was significantly improved for BG-containing porous silicones (+72% for microcomposites) and even further enhanced for composites containing nanoparticles (+94%). These findings make BG a suitable material to improve silicone implant properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018

    History and performance of implant materials applied as peritendinous antiadhesives

    Full text link
    Peritendinous fibrotic adhesions after tendon surgery are still a problem up-to-date. Approaches to overcome or at least minimize adhesion formation include implantation of barrier materials, application of lubricants or combinations of materials and functionalized drugs that are controllably released and support the healing tendon to glide and achieve the full range of motion after regeneration. Although a huge amount of different materials have been experimentally tested, the optimal strategy with respect to material and method has not yet been determined. In this review, we present a historical overview of physical barriers as well as liquid agents that have been used in order to prevent peritendinous adhesion formation. The materials are divided according to their first publication into two time frames; before and after 1980. There is no claim to include all materials tested neither will the "best" material be chosen; however, we present several materials that were experimentally tested in different animal trials as well as in clinical trials in contrast to other materials that were only tested once and disappeared from the assortment of anti-adhesives; which as such is a valuable information about its applicability for this purpose. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014

    Delineation of the healthy rabbit liver by immunohistochemistry - A technical note

    Full text link
    Liver diseases pose a big global health problem and liver failure may result from viral infection, overnutrition or tumors. Studying pathologic liver tissue demands for accurate and specific histological stainings and immunohistochemical labellings, including chromogenic and fluorescent approaches. Moreover, a reliable set of healthy liver stainings and labellings are required, to provide a baseline or reference for the pathological situation. Here, we used the liver tissue of a healthy rabbit and compared different histological key steps, such as paraffin embedding after formalin fixation versus cryopreservation; or an antigen retrieval (AR) step in processing paraffin sections versus the same procedure without AR; or chromogenic with fluorescent detection system, respectively. Moreover, we provide images of serial sections, where we stained the same morphological structure with different markers, including collagen I, collagen III, fibronectin, α-SMA, elastin, protease-activated receptor-2 (PAR-2) which is an inflammation-related marker, ki67 for proliferating cells, and orcein (as negative control for pathological aberrations like Wilson disease). Differences between conditions were quantitatively assessed by measuring the colour intensity. Generally, we observed that cryosections exhibited a stronger signal intensity in immunohistochemically labelled sections than in paraffin sections; however, the strong staining got slurred, which sometimes hampered proper identification of morphological structures at higher magnifications. Moreover, there was a clear increase in signal intensity for paraffin sections when an AR step was performed compared to condition without AR. Results for mouse isotype staining as a negative control clearly supported those findings. Different stainings of the portal triad, the central vein and the bile ducts revealed a clear-cut distribution of extracellular matrix components, with prominent fibronectin and elastin around the lumen of the central vein as well as a patchy PAR-2 expression. As for the bile ducts, complete absence of α-SMA and PAR-2 was found at the margins, however, collagen I expression and elastin were positive and showed a strong signal. Like this, we provide useful and valuable reference images for researchers using the rabbit liver model. It may help to decide which of the immunohistochemical protocols are valuable to reach a certain aim and which protocols lead to the best visualization of the target structure

    Impact of PDGF-BB on cellular distribution and extracellular matrix in the healing rabbit Achilles tendon three weeks post-operation

    Get PDF
    Current methods for tendon rupture repair suffer from two main drawbacks: insufficient strength and adhesion formation, which lead to re-rupture and impaired gliding. A novel polymer tube may help to overcome these problems by allowing growth factor delivery to the wound site and adhesion reduction, and by acting as a physical barrier to the surrounding tissue. In this study, we used a bi-layered DegraPol® tube to deliver PDGF-BB to the wound site in a rabbit full transection Achilles tendon model. We then performed histological and immunohistochemical analysis at 3 weeks post-operation. Sustained delivery of PDGF-BB to the healing Achilles tendon led to a significantly more homogenous cell distribution within the healing tissue. Lower cell densities next to the implant material were determined for +PDGF-BB samples compared to -PDGF-BB. PDGF-BB application increased proteoglycan content and reduced alpha-SMA areas, clusters of different sizes, mainly vessels. Finally, PDGF-BB reduced collagen I and III in the extracellular matrix. The sustained delivery of PDGF-BB via an electrospun DegraPol® tube accelerated tendon wound healing by causing a more uniform cell distribution with higher proteoglycan content and less fibrotic tissue. Moreover, the application of this growth factor reduced collagen III and alpha-SMA, indicating faster and less fibrotic tendon healing

    Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit achilles tendon tissue

    Full text link
    Abstract Objectives: Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Materials and Methods: Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral M. gastrocnemius) and were repaired with a 4-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analyzed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. Results: The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell rich areas. Conclusions: These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound

    Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    No full text
    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.ISSN:2046-639
    corecore