7,220 research outputs found
ac-Field-Controlled Anderson Localization in Disordered Semiconductor Superlattices
An ac field, tuned exactly to resonance with the Stark ladder in an ideal
tight binding lattice under strong dc bias, counteracts Wannier-Stark
localization and leads to the emergence of extended Floquet states. If there is
random disorder, these states localize. The localization lengths depend
non-monotonically on the ac field amplitude and become essentially zero at
certain parameters. This effect is of possible relevance for characterizing the
quality of superlattice samples, and for performing experiments on Anderson
localization in systems with well-defined disorder.Comment: 10 pages, Latex; figures available on request from [email protected]
CI and CO in the nearby spiral galaxies IC 342 and Maffei 2
We present J=2-1, J=3-2, J=4-3 12CO and 492 GHz [CI] maps as well as J=2-1
and J=3-2 13CO measurements of the central regions in the nearby Sc galaxies IC
342 and Maffei 2. In both galaxies, the distribution of CO and [CI] is strongly
concentrated towards the modest starburst centers. Both galaxies have nearly
identical 12CO transitional ratios but the relative intensities of their 13CO
and [CI] emission lines differ significantly and require modelling with a
multi-component molecular gas. Both have a dense component (n(H2) = 10**4 -
10**5 cm**-3) with kinetic temperatures T(kin) = 10 - 20 K (IC 342) or 20 - 60
K (Maffei 2), and a less dense (IC 342: a few hundred cm**-3 at most; Maffei 2:
about 3 x 10**3 cm**-3 and hotter (T(kin) = 100 - 150 K) component. In both
galaxies, neutral and ionized atomic carbon amounts are between 1.5 and 2.5
times those of CO, and in both about half to two thirds of the molecular gas
mass is associated with a hot PDR phase. Within R = 0.25 kpc, the center of IC
342 contains an (atomic and molecular) gas mass of 1 x 10**7 M(sun) and a peak
face-on gas mass density of about 70 M(sun) pc**-2. For Maffei 2 these numbers
are less clearly defined, mainly because of its uncertain distance and carbon
abundance. We find a gass mass M(gas) > 0.5 x 10**7 M(sun) and a peak face-on
gas mass density of about 35 M(sun) pc**-2.Comment: 11 pages; accepted by astronomy and Astrophysic
Transcriptional Regulation of Liver-Type OATP1B3 (Lt-OATP1B3) and Cancer-Type OATP1B3 (Ct-OATP1B3) Studied in Hepatocyte-Derived and Colon Cancer-Derived Cell Lines
Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about transcription factors regulating this differential expression. Therefore, we cloned DNA fragments from the promoter regions of the Lt-SLCO1B3 and the Ct-SLCO1B3 gene and investigated their luciferase activity in hepatocellular and colorectal cancer cell lines. Both promoters showed differences in their luciferase activity depending on the used cell lines. We identified the first 100 bp upstream of the transcriptional start site as the core promoter region of the Ct-SLCO1B3 gene. In silico predicted binding sites for the transcription factors ZKSCAN3, SOX9 and HNF1α localized within these fragments were further analyzed. The mutagenesis of the ZKSCAN3 binding site reduced the luciferase activity of the Ct-SLCO1B3 reporter gene construct in the colorectal cancer cell lines DLD1 and T84 to 29.9% and 14.3%, respectively. In contrast, using the liver-derived Hep3B cells, 71.6% residual activity could be measured. This indicates that the transcription factors ZKSCAN3 and SOX9 are important for the cell type-specific transcriptional regulation of the Ct-SLCO1B3 gene
Coupling the dynamics and the molecular chemistry in the Galactic center
The physical conditions of the Galactic center (GC) clouds moving with
non-circular velocities are not well-known. We have studied the physical
conditions of these clouds with the aim of better understanding the origin of
the outstanding physical conditions of the GC molecular gas and the possible
effect of the large scale dynamics on these physical conditions.Using published
CO(1-0) data, we have selected a set of clouds belonging to all the kinematical
components seen in the longitude-velocity diagram of the GC. We have done a
survey of dense gas in all the components using the J=2-1 lines of CS and SiO
as tracers of high density gas and shock chemistry. We have detected CS and SiO
emission in all the kinematical components. The gas density and the SiO
abundance of the clouds in non-circular orbits are similar those in the nuclear
ring (GCR). Therefore, in all the kinematical components there are dense clouds
that can withstand the tidal shear. However, there is no evidence of star
formation outside the GCR. The high relative velocity and shear expected in the
dust-lanes along the bar major axis could inhibit the star formation process,
as observed in other galaxies. The high SiO abundances derived in the
non-circular velocity clouds are likely due to the large-scale shocks that
created the dust lanesComment: One figure as an independent PDF file. Accepted by A&
The Casimir energy of skyrmions in the 2+1-dimensional O(3)-model
One-loop quantum corrections to the classical vortices in 2+1 dimensional
O(3)-models are evaluated. Skyrme and Zeeman potential terms are used to
stabilize the size of topological solitons. Contributions from zero modes,
bound-states and scattering phase-shifts are calculated for vortices with
winding index n=1 and n=2. For both cases the S-matrix shows a pronounced
series of resonances for magnon-vortex scattering in analogy to the
well-established baryon resonances in hadron physics, while vortices with n>2
are already classically unstable against decay. The quantum corrections
destabilize the classically bound n=2 configuration. Approximate independence
of the results with respect to changes in the renormalization scale is
demonstrated.Comment: 24 pages LaTeX, 14 figure
Size rather than complexity of sexual ornaments prolongs male metamorphosis and explains sexual size dimorphism in sepsid flies
Male sexual ornaments often evolve rapidly and are thought to be costly, thus contributing to sexual size dimorphism. However, little is known about their developmental costs, and even less about costs associated with structural complexity. Here, we quantified the size and complexity of three morphologically elaborate sexually dimorphic male ornaments that starkly differ across sepsid fly species (Diptera: Sepsidae): (i) male forelegs range from being unmodified, like in most females, to being adorned with spines and large cuticular protrusions; (ii) the fourth abdominal sternites are either unmodified or are converted into complex de novo appendages; and (iii) male genital claspers range from small and simple to large and complex (e.g. bifurcated). We tracked the development of 18 sepsid species from egg to adult to determine larval feeding and pupal metamorphosis times of both sexes. We then statistically explored whether pupal and adult body size, ornament size and/or ornament complexity are correlated with sex-specific development times. Larval growth and foraging periods of male and female larvae did not differ, but the time spent in the pupal stage was ca 5% longer for sepsid males despite emerging 9% smaller than females on average. Surprisingly, we found no evidence that sexual trait complexity prolongs pupal development beyond some effects of trait size. Evolving more complex traits thus does not incur developmental costs at least in this system
The STAR MAPS-based PiXeL detector
The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR
experiment at RHIC is the first application of the state-of-the-art thin
Monolithic Active Pixel Sensors (MAPS) technology in a collider environment.
Custom built pixel sensors, their readout electronics and the detector
mechanical structure are described in detail. Selected detector design aspects
and production steps are presented. The detector operations during the three
years of data taking (2014-2016) and the overall performance exceeding the
design specifications are discussed in the conclusive sections of this paper
Model Checking CTL is Almost Always Inherently Sequential
The model checking problem for CTL is known to be P-complete (Clarke,
Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of
CTL obtained by restricting the use of temporal modalities or the use of
negations---restrictions already studied for LTL by Sistla and Clarke (1985)
and Markey (2004). For all these fragments, except for the trivial case without
any temporal operator, we systematically prove model checking to be either
inherently sequential (P-complete) or very efficiently parallelizable
(LOGCFL-complete). For most fragments, however, model checking for CTL is
already P-complete. Hence our results indicate that, in cases where the
combined complexity is of relevance, approaching CTL model checking by
parallelism cannot be expected to result in any significant speedup. We also
completely determine the complexity of the model checking problem for all
fragments of the extensions ECTL, CTL+, and ECTL+
Polarization state of the optical near-field
The polarization state of the optical electromagnetic field lying several
nanometers above complex dielectric structures reveals the intricate
light-matter interaction that occurs in this near-field zone. This information
can only be extracted from an analysis of the polarization state of the
detected light in the near-field. These polarization states can be calculated
by different numerical methods well-suited to near--field optics. In this
paper, we apply two different techniques (Localized Green Function Method and
Differential Theory of Gratings) to separate each polarisation component
associated with both electric and magnetic optical near-fields produced by
nanometer sized objects. The analysis is carried out in two stages: in the
first stage, we use a simple dipolar model to achieve insight into the physical
origin of the near-field polarization state. In the second stage, we calculate
accurate numerical field maps, simulating experimental near-field light
detection, to supplement the data produced by analytical models. We conclude
this study by demonstrating the role played by the near-field polarization in
the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
Deterministic polarization chaos from a laser diode
Fifty years after the invention of the laser diode and fourty years after the
report of the butterfly effect - i.e. the unpredictability of deterministic
chaos, it is said that a laser diode behaves like a damped nonlinear
oscillator. Hence no chaos can be generated unless with additional forcing or
parameter modulation. Here we report the first counter-example of a
free-running laser diode generating chaos. The underlying physics is a
nonlinear coupling between two elliptically polarized modes in a
vertical-cavity surface-emitting laser. We identify chaos in experimental
time-series and show theoretically the bifurcations leading to single- and
double-scroll attractors with characteristics similar to Lorenz chaos. The
reported polarization chaos resembles at first sight a noise-driven mode
hopping but shows opposite statistical properties. Our findings open up new
research areas that combine the high speed performances of microcavity lasers
with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure
- …