2 research outputs found

    Interlayer connectivity reconstruction for multilayer brain networks using phase oscillator models

    Get PDF
    Large-scale neurophysiological networks are often reconstructed from band-pass filtered time series derived from magnetoencephalography (MEG) data. Common practice is to reconstruct these networks separately for different frequency bands and to treat them independently. Recent evidence suggests that this separation may be inadequate, as there can be significant coupling between frequency bands (interlayer connectivity). A multilayer network approach offers a solution to analyze frequency-specific networks in one framework. We propose to use a recently developed network reconstruction method in conjunction with phase oscillator models to estimate interlayer connectivity that optimally fits the empirical data. This approach determines interlayer connectivity based on observed frequency-specific time series of the phase and a connectome derived from diffusion weighted imaging. The performance of this interlayer reconstruction method was evaluated in-silico. Our reconstruction of the underlying interlayer connectivity agreed to very high degree with the ground truth. Subsequently, we applied our method to empirical resting-state MEG data obtained from healthy subjects and reconstructed two-layered networks consisting of either alpha-to-beta or theta-to-gamma band connectivity. Our analysis revealed that interlayer connectivity is dominated by a multiplex structure, i.e. by one-to-one interactions for both alpha-to-beta band and theta-to-gamma band networks. For theta-gamma band networks, we also found a plenitude of interlayer connections between distant nodes, though weaker connectivity relative to the one-to-one connections. Our work is an stepping stone towards the identification of interdependencies across frequency-specific networks. Our results lay the ground for the use of the promising multilayer framework in this field with more-informed and justified interlayer connections. Network Architectures and Service

    Predicting time-resolved electrophysiological brain networks from structural eigenmodes

    No full text
    How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.Network Architectures and Service
    corecore