4 research outputs found

    ODMedit: uniform semantic annotation for data integration in medicine based on a public metadata repository

    Get PDF
    Abstract Background The volume and complexity of patient data – especially in personalised medicine – is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Methods Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don’t provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. Results A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Conclusion Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository

    Pragmatic MDR: a metadata repository with bottom-up standardization of medical metadata through reuse

    No full text
    Background!#!The variety of medical documentation often leads to incompatible data elements that impede data integration between institutions. A common approach to standardize and distribute metadata definitions are ISO/IEC 11179 norm-compliant metadata repositories with top-down standardization. To the best of our knowledge, however, it is not yet common practice to reuse the content of publicly accessible metadata repositories for creation of case report forms or routine documentation. We suggest an alternative concept called pragmatic metadata repository, which enables a community-driven bottom-up approach for agreeing on data collection models. A pragmatic metadata repository collects real-world documentation and considers frequent metadata definitions as high quality with potential for reuse.!##!Methods!#!We implemented a pragmatic metadata repository proof of concept application and filled it with medical forms from the Portal of Medical Data Models. We applied this prototype in two use cases to demonstrate its capabilities for reusing metadata: first, integration into a study editor for the suggestion of data elements and, second, metadata synchronization between two institutions. Moreover, we evaluated the emergence of bottom-up standards in the prototype and two medical data managers assessed their quality for 24 medical concepts.!##!Results!#!The resulting prototype contained 466,569 unique metadata definitions. Integration into the study editor led to a reuse of 1836 items and item groups. During the metadata synchronization, semantic codes of 4608 data elements were transferred. Our evaluation revealed that for less complex medical concepts weak bottom-up standards could be established. However, more diverse disease-related concepts showed no convergence of data elements due to an enormous heterogeneity of metadata. The survey showed fair agreement (K!##!Conclusions!#!We demonstrated the feasibility of the pragmatic metadata repository concept for medical documentation. Applications of the prototype in two use cases suggest that it facilitates the reuse of data elements. Our evaluation showed that bottom-up standardization based on a large collection of real-world metadata can yield useful results. The proposed concept shall not replace existing top-down approaches, rather it complements them by showing what is commonly used in the community to guide other researchers
    corecore