6 research outputs found

    Alternating quarantine for sustainable epidemic mitigation

    Full text link
    Absent a drug or vaccine, containing epidemic outbreaks is achieved by means of social distancing, specifically mobility restrictions and lock-downs. Such measures impose a hurtful toll on the economy, and are difficult to sustain for extended periods. As an alternative, we propose here an alternating quarantine strategy, in which at every instance, half of the population remains under lock-down while the other half continues to be active, maintaining a routine of weekly succession between activity and quarantine. This regime affords a dual partition:\ half of the population interacts for only half of the time, resulting in a dramatic reduction in transmission, comparable to that achieved by a population-wide lock-down. All the while, it enables socioeconomic continuity at 50%50\% capacity. The proposed weekly alternations also address an additional challenge, with specific relevance to COVID-19. Indeed, SARS-CoV-2 exhibits a relatively long incubation period, in which individuals experience no symptoms, but may already contribute to the spread. Unable to selectively isolate these invisible spreaders, we resort to population-wide restrictions. However, under the alternating quarantine routine, if an individual was exposed during their active week, by the time they complete their quarantine they will, in most cases, begin to exhibit symptoms. Hence this strategy isolates the majority of pre-symptomatic individuals during their infectious phase, leading to a rapid decline in the viral spread, thus addressing one of the main challenges in COVID-19 mitigation.Comment: 36 pages, 13 figure

    Alternating quarantine for sustainable epidemic mitigation

    No full text
    International audienceAbsent pharmaceutical interventions, social distancing, lock-downs and mobility restrictions remain our prime response in the face of epidemic outbreaks. To ease their potentially devastating socioeconomic consequences, we propose here an alternating quarantine strategy: at every instance, half of the population remains under lockdown while the other half continues to be active - maintaining a routine of weekly succession between activity and quarantine. This regime minimizes infectious interactions, as it allows only half of the population to interact for just half of the time. As a result it provides a dramatic reduction in transmission, comparable to that achieved by a population-wide lockdown, despite sustaining socioeconomic continuity at ~50% capacity. The weekly alternations also help address the specific challenge of COVID-19, as their periodicity synchronizes with the natural SARS-CoV-2 disease time-scales, allowing to effectively isolate the majority of infected individuals precisely at the time of their peak infection

    Abstracts of papers presented at the 8th conference of the Entomological Society of Israel Abstracts of papers presented at the 17th congress of the Israeli Phytopathological Society

    No full text
    corecore