35 research outputs found
Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals
Natural killer (NK) cells are important for maintenance of innate immune system stability and serve as a first line of defense against tumors and virus infections; they can act either directly or indirectly and are regulated via co-operation between inhibitory and stimulatory surface receptors. The recently reported inhibitory receptor, TIGIT, can be expressed on the NK cell surface; however, the expression level and function of TIGIT on NK cells during HIV infection is unknown. In this study, for the first time, we investigated the expression and function of TIGIT in NK cells from HIV-infected individuals. Our data demonstrate that the level of TIGIT is higher on NK cells from patients infected with human immunodeficiency virus (HIV) compared with HIV-negative healthy controls. TIGIT expression is inversely correlated with CD4+ T cell counts and positively correlated with plasma viral loads. Additionally, levels of the TIGIT ligand, CD155, were higher on CD4+ T cells from HIV-infected individuals compared with those from healthy controls; however, there was no difference in the level of the activating receptor, CD226, which recognizes the same ligands as TIGIT. Furthermore, TIGIT was found to specifically up-regulated on CD226+ NK cells in HIV-infected individuals, and either rIL-10, or rIL-12 + rIL-15, could induce TIGIT expression on these cells. In addition, high TIGIT expression inhibited the production of interferon-gamma (IFN-γ) by NK cells, while TIGIT inhibition restored IFN-γ production. Overall, these results highlight the important role of TIGIT in NK cell function and suggest a potential new avenue for the development of therapeutic strategies toward a functional cure for HIV
Osmotic Stress Induced Cell Death in Wheat Is Alleviated by Tauroursodeoxycholic Acid and Involves Endoplasmic Reticulum Stress–Related Gene Expression
Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress–induced cell death probably by regulating endoplasmic reticulum (ER) stress–related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress–related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress–related plant osmotic stress resistance
NKG2C+NKG2A− Natural Killer Cells are Associated with a Lower Viral Set Point and may Predict Disease Progression in Individuals with Primary HIV Infection
Natural killer (NK) cells are the first line of defense against pathogens of the immune system and also play an important role in resistance against HIV. The activating receptor NKG2C and the inhibitory receptor NKG2A co-modulate the function of NK cells by recognizing the same ligand, HLA-E. However, the role of NKG2A and NKG2C on viral set point and the prediction of HIV disease progression have been rarely reported. In this study, we determined the expression of NKG2C or NKG2A on the surface of NK cells from 22 individuals with primary HIV infection (PHI) stage and 23 HIV-negative normal control (NC) subjects. The CD4+ T cell count and plasma level of HIV RNA in the infected individuals were longitudinally followed-up for about 720 days. The proportion of NKG2C+NKG2A− NK cells was higher in subjects from the low set point group and was negatively correlated with the viral load. In addition, strong anti-HIV activities were observed in NKG2C+ NK cells from the HIV-positive donors. Furthermore, a proportion of NKG2C+NKG2A− NK cells >35.45%, and a ratio of NKG2C/NKG2A >1.7 were predictive for higher CD4+ T cell counts 720 days after infection. Collectively, the experimental results allow us to draw the conclusion that NKG2C+ NK cells might exert an antiviral effect and that the proportion of NKG2C+NKG2A− NK cells, and the ratio of NKG2C/NKG2A, are potential biomarkers for predicting HIV disease progression
Evaluation of Ecosystem Service Change Patterns in a Mining-Based City: A Case Study of Wu’an City
To coordinate the economy and environment in mining cities, it is critical to understand the ecological effects of land use/cover change (LUCC). Therefore, we selected a typical mining city to analyze LUCC-driven ecosystem service changes. In this study, we first used the equivalent factor method to calculate the ecosystem services valuation (ESV) in Wu’an and verified the rationality of the ESV coefficient through the sensitivity index. Secondly, ArcGIS was used to analyze the spatial change of ecosystem service value and explore the reasons for the change. Finally, the spatial autocorrelation index was calculated to analyze the spatial aggregation characteristics of ESV. The results showed that (1) between 2009 and 2018, the total value of ecosystem services decreased by USD 7.41 million, mainly due to the conversion of cropland to construction land. (2) The individual ecosystem services that contributed the most were waste disposal, water conservation, and soil conservation. The pollution caused by the development of mining has reduced the value of the waste disposal function, and the reduction in water body area has been the main factor limiting the water conservation function. (3) The areas with the most significant changes in ecosystem services were concentrated in the east-north direction, where mining resources were widely distributed, and near the central city. Furthermore, there were relatively small losses in the north-west direction, which was related to the protection of ecological resources influenced by topographical factors and less anthropogenic disturbance. (4) The value of ecosystem services and their dynamics exhibited obvious spatial autocorrelation and high-low value (HL) clustering in Wu’an. The high-value and low-value areas dissolved and penetrated each other, and the low-high value (LH) clustering and HL clustering were scattered. The high-value areas were mostly shown in strips, as they were the main locations of water bodies. This study is crucial for mining cities to maintain spatial stability and sustainable development, and the results provide a scientific basis for land use management decision makers to regulate land more precisely
Evaluation of Ecosystem Service Change Patterns in a Mining-Based City: A Case Study of Wu’an City
To coordinate the economy and environment in mining cities, it is critical to understand the ecological effects of land use/cover change (LUCC). Therefore, we selected a typical mining city to analyze LUCC-driven ecosystem service changes. In this study, we first used the equivalent factor method to calculate the ecosystem services valuation (ESV) in Wu’an and verified the rationality of the ESV coefficient through the sensitivity index. Secondly, ArcGIS was used to analyze the spatial change of ecosystem service value and explore the reasons for the change. Finally, the spatial autocorrelation index was calculated to analyze the spatial aggregation characteristics of ESV. The results showed that (1) between 2009 and 2018, the total value of ecosystem services decreased by USD 7.41 million, mainly due to the conversion of cropland to construction land. (2) The individual ecosystem services that contributed the most were waste disposal, water conservation, and soil conservation. The pollution caused by the development of mining has reduced the value of the waste disposal function, and the reduction in water body area has been the main factor limiting the water conservation function. (3) The areas with the most significant changes in ecosystem services were concentrated in the east-north direction, where mining resources were widely distributed, and near the central city. Furthermore, there were relatively small losses in the north-west direction, which was related to the protection of ecological resources influenced by topographical factors and less anthropogenic disturbance. (4) The value of ecosystem services and their dynamics exhibited obvious spatial autocorrelation and high-low value (HL) clustering in Wu’an. The high-value and low-value areas dissolved and penetrated each other, and the low-high value (LH) clustering and HL clustering were scattered. The high-value areas were mostly shown in strips, as they were the main locations of water bodies. This study is crucial for mining cities to maintain spatial stability and sustainable development, and the results provide a scientific basis for land use management decision makers to regulate land more precisely
One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks
In order to facilely increase the color yield of ink-jet prints using reactive inks, one-bath pretreatment of cotton fabrics with pretreatment formulation containing sodium alginate, glycidyltrimethylammonium chloride (GTA), sodium hydroxide, and urea is designed for realizing sizing and cationization at the same time. The pretreatment conditions, including the concentrations of GTA and alkali, baking temperature, and time are optimized based on the result of thecolor yield on cationic cotton for magenta ink. The mechanism for color yield enhancement on GTA-modified fabrics is discussed and the stability of GTA in the print paste is investigated. Scanning electron microscopey, tear strength, and thermogravimetric analysis of the modified and unmodified cotton are studied and compared. Using the optimal pretreatment conditions, color yield on the cationic cotton for magenta, cyan, yellow, and black reactive inks are increased by 128.7%, 142.5%, 71.0%, and 38.1%, respectively, compared with the corresponding color yield on the uncationized cotton. Much less wastewater is produced using this one-bath pretreatment method. Colorfastness of the reactive dyes on the modified and unmodified cotton is compared and boundary clarity between different colors is evaluated by ink-jet printing of colorful patterns
The role of the immunoproteasome in cardiovascular disease
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions
An early warning model to predict acute kidney injury in sepsis patients with prior hypertension
Background: In the context of sepsis patients, hypertension has a significant impact on the likelihood of developing sepsis-associated acute kidney injury (S-AKI), leading to a considerable burden. Moreover, sepsis is responsible for over 50Â % of cases of acute kidney injuries (AKI) and is linked to an increased likelihood of death during hospitalization. The objective of this research is to develop a dependable and strong nomogram framework, utilizing the variables accessible within the first 24Â h of admission, for the anticipation of S-AKI in sepsis patients who have hypertension. Methods: In this study that looked back, a total of 462 patients with sepsis and high blood pressure were identified from Nanfang Hospital. These patients were then split into a training set (consisting of 347 patients) and a validation set (consisting of 115 patients). A multivariate logistic regression analysis and a univariate logistic regression analysis were performed to identify the factors that independently predict S-AKI. Based on these independent predictors, the model was constructed. To evaluate the efficacy of the designed nomogram, several analyses were conducted, including calibration curves, receiver operating characteristics curves, and decision curve analysis. Results: The findings of this research indicated that diabetes, prothrombin time activity (PTA), thrombin time (TT), cystatin C, creatinine (Cr), and procalcitonin (PCT) were autonomous prognosticators for S-AKI in sepsis individuals with hypertension. The nomogram model, built using these predictors, demonstrated satisfactory discrimination in both the training (AUCÂ =Â 0.823) and validation (AUCÂ =Â 0.929) groups. The S-AKI nomogram demonstrated superior predictive ability in assessing S-AKI within the hypertension grade I (AUCÂ =Â 0.901) set, surpassing the hypertension grade II (AUCÂ =Â 0.816) and III (AUCÂ =Â 0.810) sets. The nomogram exhibited satisfactory calibration and clinical utility based on the calibration curve and decision curve analysis. Conclusion: In patients with sepsis and high blood pressure, the nomogram that was created offers a dependable and strong evaluation for predicting S-AKI. This evaluation provides valuable insights to enhance individualized treatment, ultimately resulting in improved clinical outcomes
Superaerophobic polymer objects prototyped via liquid crystal display (LCD)-based 3D printing: one-step post-surface-treatment and application in underwater bubble manipulation
Underwater superaerophobic surface is of great significance for controllable manipulation of gas bubbles in scientific research and practical applications. However, the fabrication of arbitrary-shaped superaerophobic solid surfaces through a simple and low-cost approach is still hard. Herein, superaerophobic 3D objects were manufactured via liquid crystal display (LCD)-based 3D printing (vat photopolymerisation-based additive manufacturing) combined with one-step post-surface-treatment in sodium hydroxide (NaOH) solution. The influences of NaOH concentration, reaction temperature and time on the wettability of the polymer surface were systematically investigated. After a suitable alkali-treatment, the object surface obtained a bubble contact angle of 159° with extremely low bubble adhesion, featuring the underwater superaerophobicity. Morphology and composition characterisation demonstrated that a hydrophilic gel layer was produced on the printed sheet after the alkali-treatment, which is explained as the main mechanism of the superwetting transition from aerophobicity to superaerophobicity. Interestingly, spontaneously formed surface microgrids (size in xy direction: ∼50 μm) during 3D printing accelerated the alkali-treatment. Further, a superaerophobic 3D tweezer was designed, fabricated, and successfully applied in a toxic nitric oxide (NO) bubble reaction underwater for gas purity detection. The one-step post-surface-treatment method is also suitable for other commercial photosensitive resins and digital-light-processing (DLP) 3D printing
Nutrient Stimulation of Indigenous Microorganisms for Oil-in-Water Emulsion in a Medium Temperature Petroleum Reservoir with Ca2+-Rich Brine
One of the challenges indigenous microbial enhanced oil recovery (MEOR) is facing is the high percentage of divalent ions, which obstruct the growth and metabolism of microorganisms and destabilize the oil-in-water (o/w) emulsion. Six formulas were selected for the stimulation of indigenous microbes and to compare their performances on the oil emulsification and oil spreading in the Luliang oilfield containing Ca2+-rich brine. Illumina MiSeq sequencing of 16S rRNA genes was applied to investigate the structural response of microbial communities to various formulas. The results showed that the addition of proper organic phosphorus and the optimal P/N ratio (0.01) can facilitate production of biosurfactant and create stable o/w emulsion with specific reservoir condition containing Ca2+-rich brine, through direct stimulation of certain functional microbes. This study provides a promising path for direct enrichment of biosurfactant-producing and oil-degrading Dietzia genus and a potential instructional approach of indigenous MEOR in Luliang oilfield