4 research outputs found

    New Genotypes and Phenotypes in Patients with 3 Subtypes of Waardenburg Syndrome Identified by Diagnostic Next-Generation Sequencing

    No full text
    Background. Waardenburg syndrome (WS) is one of the most common forms of syndromic deafness with heterogeneity of loci and alleles and variable expressivity of clinical features. Methods. The technology of single-nucleotide variants (SNV) and copy number variation (CNV) detection was developed to investigate the genotype spectrum of WS in a Chinese population. Results. Ninety WS patients and 24 additional family members were recruited for the study. Fourteen mutations had not been previously reported, including c.808C>G, c.117C>A, c.152T>G, c.803G>T, c.793-3T >G, and c.801delT on PAX3; c.642_650delAAG on MITF; c.122G>T and c.127C>T on SOX10; c.230C>G and c.365C>T on SNAI2; and c.481A>G, c.1018C>G, and c.1015C>T on EDNRB. Three CNVs were de novo and first reported in our study. Five EDNRB variants were associated with WS type 1 in the heterozygous state for the first time, with a detection rate of 22.2%. Freckles occur only in WS type 2. Yellow hair, amblyopia, congenital ptosis, narrow palpebral fissures, and pigmentation spots are rare and unique symptoms in WS patients from China. Conclusions. EDNRB should be considered as another prevalent pathogenic gene in WS type 1. Our study expanded the genotype and phenotype spectrum of WS, and diagnostic next-generation sequencing is promising for WS

    ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss

    No full text
    Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a highly genetically heterogeneous disorder. Up to date only approximately 37 ADNSHL-causing genes have been identified. The goal of this study was to determine the causative gene in a five-generation Chinese family with ADNSHL. A Chinese family was ascertained. Simultaneously, two affected individuals and one normal hearing control from the family were analyzed by whole exome capture sequencing. To assess the functional effect of the identified variant, in-vitro studies were performed. novel missense variant, c.512A>G (p.His171Arg) in exon 8 of the ELMO domain-containing 3 (ELMOD3) gene, was identified as a causative variant in this family affected by late-onset and progressive ADNSHL. The variant was validated by Sanger sequencing and found to co-segregate with the phenotype within the pedigree and was absent in 500 ethnically matched unrelated normal hearing control subjects. To our knowledge, this is the first report of a family with ADNSHL caused by ELMOD3 mutation. Western blots and immunofluorescence staining demonstrated that p.His171Arg resulted in abnormal expression levels of ELMOD3 and abnormal subcellular localization. Furthermore, the analysis of the stability of the wild-type (WT) and mutant ELMOD3 protein shows that the decay of p.His171Arg is faster than that of the WT, suggesting a shorter halflife of the c.512A > G variant. A novel variant in the ELMOD3 gene, encoding a member of the engulfment and cell motility (ELMO) family of GTPase-activating proteins, was identified for the first time as responsible for ADNSHL

    Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family

    No full text
    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant
    corecore