11,142 research outputs found
TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments
Deep neural networks (DNNs) have become core computation components within
low latency Function as a Service (FaaS) prediction pipelines: including image
recognition, object detection, natural language processing, speech synthesis,
and personalized recommendation pipelines. Cloud computing, as the de-facto
backbone of modern computing infrastructure for both enterprise and consumer
applications, has to be able to handle user-defined pipelines of diverse DNN
inference workloads while maintaining isolation and latency guarantees, and
minimizing resource waste. The current solution for guaranteeing isolation
within FaaS is suboptimal -- suffering from "cold start" latency. A major cause
of such inefficiency is the need to move large amount of model data within and
across servers. We propose TrIMS as a novel solution to address these issues.
Our proposed solution consists of a persistent model store across the GPU, CPU,
local storage, and cloud storage hierarchy, an efficient resource management
layer that provides isolation, and a succinct set of application APIs and
container technologies for easy and transparent integration with FaaS, Deep
Learning (DL) frameworks, and user code. We demonstrate our solution by
interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x
speedup in latency for image classification models and up to 210x speedup for
large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201
- …