2 research outputs found

    Deep Learning-Based Road Pavement Inspection by Integrating Visual Information and IMU

    No full text
    This study proposes a deep learning method for pavement defect detection, focusing on identifying potholes and cracks. A dataset comprising 10,828 images is collected, with 8662 allocated for training, 1083 for validation, and 1083 for testing. Vehicle attitude data are categorized based on three-axis acceleration and attitude change, with 6656 (64%) for training, 1664 (16%) for validation, and 2080 (20%) for testing. The Nvidia Jetson Nano serves as the vehicle-embedded system, transmitting IMU-acquired vehicle data and GoPro-captured images over a 5G network to the server. The server recognizes two damage categories, low-risk and high-risk, storing results in MongoDB. Severe damage triggers immediate alerts to maintenance personnel, while less severe issues are recorded for scheduled maintenance. The method selects YOLOv7 among various object detection models for pavement defect detection, achieving a mAP of 93.3%, a recall rate of 87.8%, a precision of 93.2%, and a processing speed of 30–40 FPS. Bi-LSTM is then chosen for vehicle vibration data processing, yielding 77% mAP, 94.9% recall rate, and 89.8% precision. Integration of the visual and vibration results, along with vehicle speed and travel distance, results in a final recall rate of 90.2% and precision of 83.7% after field testing

    Effective semantic features for facial expressions recognition using SVM

    No full text
    [[abstract]]Most traditional facial expression-recognition systems track facial components such as eyes, eyebrows, and mouth for feature extraction. Though some of these features can provide clues for expression recognition, other finer changes of the facial muscles can also be deployed for classifying various facial expressions. This study locates facial components by active shape model to extract seven dynamic face regions (frown, nose wrinkle, two nasolabial folds, two eyebrows, and mouth). Proposed semantic facial features could then be acquired using directional gradient operators like Gabor filters and Laplacian of Gaussian. A multi-class support vector machine (SVM) was trained to classify six facial expressions (neutral, happiness, surprise, anger, disgust, and fear). The popular Cohn–Kanade database was tested and the average recognition rate reached 94.7 %. Also, 20 persons were invited for on-line test and the recognition rate was about 93 % in a real-world environment. It demonstrated that the proposed semantic facial features could effectively represent changes between facial expressions. The time complexity could be lower than the other SVM based approaches due to the less number of deployed features.[[notice]]補正完
    corecore