1,774 research outputs found
Recommended from our members
The use of methoprene in the preparation of an immunogen from non-immunogenic insect growth regulators with juvenile hormone activity : development of a model system.
Thesis (M.S.
Recommended from our members
The use of enzyme immunoassay for the quantitative analysis of an insect growth regulator and insect juvenile hormone from environmental andbiological matrices.
Two immunoassay formats were developed for the detection of low levels of the insect growth regulator, methoprene. The generation of methoprene-specific antibodies needed for such assays relied on the preparation of a methoprene-carrier immunogen. 11-Methoxy-3,7,11-trimethyl-2E,4E-dodecadienoic acid was covalently bound to a protein carrier via a spacer group. Two activated ester methods were used to prepare the immunogen, one of which forms a water soluble, activated ester of methoprene. Polyclonal antibodies raised against the methoprene immunogen were highly specific for methoprene. An indirect enzyme-linked immunosorbent assay (iELISA) and a competitive inhibition enzyme immunoassay (CIEIA) were developed using the polyclonal antisera. The range of the methoprene indirect ELISA was from 5 to 300 ng/mL (ppb), with an I\sb{50} of 50 ng/mL, while the CIEIA has a range from 1.0 to 10 ppb, with an I\sb{50} of 3.5 ppb. An indirect ELISA was also developed for insect juvenile hormone III from rabbit polyclonal antisera. The synthesis of several juvenile hormone derivatives used to prepare a juvenile hormone immunogen is described. The immunogen consisted of juvenile hormone III bound to a spacer arm via an ester, which was bound, in turn to a carrier protein via an amide bond. The resulting immunochemical assay showed high specificity for juvenile hormone III, with an I\sb{50} of 225 ng/well. The juvenile hormone homologs, I and II, had I\sb{50}\u27s of 5000 and 800 ng/well, respectively. Other juvenile hormone analogs cross reacted with the juvenile hormone III antibody to a much lesser degree. The juvenile hormone III indirect ELISA has great potential for becoming the first readily available, easy-to-use analytical technique for the quantification of the hormone from biological materials
The Effect of Sample Handling on Cross Sectional HIV Incidence Testing Results
To determine if mishandling prior to testing would make a sample from a chronically infected subject appear recently infected when tested by cross-sectional HIV incidence assays.Serum samples from 31 subjects with chronic HIV infection were tested. Samples were subjected to different handling conditions, including incubation at 4 °C, 25 °C and 37 °C, for 1, 3, 7 or 15 days prior to testing. Samples were also subjected to 1,3, 7 and 15 freeze-thaw cycles prior to testing. Samples were tested using the BED capture enzyme immuno assay (BED-CEIA), Vironostika-less sensitive (V-LS), and an avidity assay using the Genetic Systems HIV-1/HIV-2 plus O EIA (avidity assay).Compared to the sample that was not subjected to any mishandling conditions, for the BED-CEIA, V-LS and avidity assay, there was no significant change in test results for samples incubated at 4 °C or 25 °C prior to testing. No impact on test results occurred after 15 freeze-thaw cycles. A decrease in assay results was observed when samples were held for 3 days or longer at 37 °C prior to testing.Samples can be subjected up to 15 freeze-thaw cycles without affecting the results the BED-CEIA, Vironostika-LS, or avidity assays. Storing samples at 4 °C or 25 °C for up to fifteen days prior to testing had no impact on test results. However, storing samples at 37°C for three or more days did affect results obtained with these assays
Performance of laboratory tests used to measure blood phenylalanine for the monitoring of patients with phenylketonuria
Analysis of blood phenylalanine is central to the monitoring of patients with phenylketonuria (PKU) and age‐related phenylalanine target treatment‐ranges (0‐12 years; 120‐360 μmol/L, and >12 years; 120‐600 μmol/L) are recommended in order to prevent adverse neurological outcomes. These target treatment‐ranges are based upon plasma phenylalanine concentrations. However, patients are routinely monitored using dried bloodspot (DBS) specimens due to the convenience of collection. Significant differences exist between phenylalanine concentrations in plasma and DBS, with phenylalanine concentrations in DBS specimens analyzed by flow‐injection analysis tandem mass spectrometry reported to be 18% to 28% lower than paired plasma concentrations analyzed using ion‐exchange chromatography. DBS specimens with phenylalanine concentrations of 360 and 600 μmol/L, at the critical upper‐target treatment‐range thresholds would be plasma equivalents of 461 and 768 μmol/L, respectively, when a reported difference of 28% is taken into account. Furthermore, analytical test imprecision and bias in conjunction with pre‐analytical factors such as volume and quality of blood applied to filter paper collection devices to produce DBS specimens affect the final test results. Reporting of inaccurate patient results when comparing DBS results to target treatment‐ranges based on plasma concentrations, together with inter‐laboratory imprecision could have a significant impact on patient management resulting in inappropriate dietary change and potentially adverse patient outcomes. This review is intended to provide perspective on the issues related to the measurement of phenylalanine in blood specimens and to provide direction for the future needs of PKU patients to ensure reliable monitoring of metabolic control using the target treatment‐ranges
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
Transcription and Expression of Plasmodium falciparum Histidine-Rich Proteins in Different Stages and Strains: Implications for Rapid Diagnostic Tests
Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs
Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases
BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome.METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants.RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving.CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.</p
Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and
Wellcome Trust
Lancet
BACKGROUND: In 2015, the second cycle of the CONCORD programme established global surveillance of cancer survival as a metric of the effectiveness of health systems and to inform global policy on cancer control. CONCORD-3 updates the worldwide surveillance of cancer survival to 2014. METHODS: CONCORD-3 includes individual records for 37.5 million patients diagnosed with cancer during the 15-year period 2000-14. Data were provided by 322 population-based cancer registries in 71 countries and territories, 47 of which provided data with 100% population coverage. The study includes 18 cancers or groups of cancers: oesophagus, stomach, colon, rectum, liver, pancreas, lung, breast (women), cervix, ovary, prostate, and melanoma of the skin in adults, and brain tumours, leukaemias, and lymphomas in both adults and children. Standardised quality control procedures were applied; errors were rectified by the registry concerned. We estimated 5-year net survival. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: For most cancers, 5-year net survival remains among the highest in the world in the USA and Canada, in Australia and New Zealand, and in Finland, Iceland, Norway, and Sweden. For many cancers, Denmark is closing the survival gap with the other Nordic countries. Survival trends are generally increasing, even for some of the more lethal cancers: in some countries, survival has increased by up to 5% for cancers of the liver, pancreas, and lung. For women diagnosed during 2010-14, 5-year survival for breast cancer is now 89.5% in Australia and 90.2% in the USA, but international differences remain very wide, with levels as low as 66.1% in India. For gastrointestinal cancers, the highest levels of 5-year survival are seen in southeast Asia: in South Korea for cancers of the stomach (68.9%), colon (71.8%), and rectum (71.1%); in Japan for oesophageal cancer (36.0%); and in Taiwan for liver cancer (27.9%). By contrast, in the same world region, survival is generally lower than elsewhere for melanoma of the skin (59.9% in South Korea, 52.1% in Taiwan, and 49.6% in China), and for both lymphoid malignancies (52.5%, 50.5%, and 38.3%) and myeloid malignancies (45.9%, 33.4%, and 24.8%). For children diagnosed during 2010-14, 5-year survival for acute lymphoblastic leukaemia ranged from 49.8% in Ecuador to 95.2% in Finland. 5-year survival from brain tumours in children is higher than for adults but the global range is very wide (from 28.9% in Brazil to nearly 80% in Sweden and Denmark). INTERPRETATION: The CONCORD programme enables timely comparisons of the overall effectiveness of health systems in providing care for 18 cancers that collectively represent 75% of all cancers diagnosed worldwide every year. It contributes to the evidence base for global policy on cancer control. Since 2017, the Organisation for Economic Co-operation and Development has used findings from the CONCORD programme as the official benchmark of cancer survival, among their indicators of the quality of health care in 48 countries worldwide. Governments must recognise population-based cancer registries as key policy tools that can be used to evaluate both the impact of cancer prevention strategies and the effectiveness of health systems for all patients diagnosed with cancer. FUNDING: American Cancer Society; Centers for Disease Control and Prevention; Swiss Re; Swiss Cancer Research foundation; Swiss Cancer League; Institut National du Cancer; La Ligue Contre le Cancer; Rossy Family Foundation; US National Cancer Institute; and the Susan G Komen Foundation
- …