14,898 research outputs found

    NASTRAN nonlinear vibration analysis of beam and frame structures

    Get PDF
    A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases

    Quasi-optical SIS mixers with normal metal tuning structures

    Get PDF
    We recently reported (1996) a quasi-optical SIS mixer which used Nb/Al-oxide/Nb tunnel junctions and a normal-metal (Al) tuning circuit to achieve an uncorrected receiver noise temperature of 840 K (DSB) at 1042 GHz. Here we present results on several different device designs, which together cover the 300-1200 GHz frequency range. The mixers utilize an antireflection-coated silicon hyper-hemispherical lens, a twin-slot antenna, and a two-junction tuning circuit. The broad-band frequency response was measured using Fourier transform spectrometry (FTS), and is in good agreement with model calculations. Heterodyne tests were carried out from 400 GHz up to 1040 GHz, and these measurements agree well with the FTS results and with calculations based on Tucker's theory (1985)

    Do Linear Dispersions of Classical Waves Mean Dirac Cones?

    Full text link
    By using the \vec{k}\cdot\vec{p} method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly-degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -\pi. Triply-degenerate states can also generate Dirac-like cone dispersions, but the wavefunctions transform like a spin-1 particle and the Berry phase is zero. Our theory is capable of predicting accurately the linear slopes of Dirac/Dirac-like cones at various symmetry points in a Brilliouin zone, independent of frequency and lattice structure

    Enhanced soft limits in de Sitter space

    Get PDF
    In flat space, the scattering amplitudes of certain scalar effective field theories exhibit enhanced soft limits due to the presence of hidden symmetries. In this paper, we show that this phenomenon extends to wavefunction coefficients in de Sitter space. Using a representation in terms of boundary conformal generators acting on contact diagrams, we find that imposing enhanced soft limits fixes the masses and four-point couplings (including curvature corrections) in agreement with Lagrangians recently derived from hidden symmetries. Higher-point couplings can then be fixed using a bootstrap procedure which we illustrate at six points. We also discuss implications for the double copy in de Sitter space
    • …
    corecore