5 research outputs found

    Effect of neural mobilisation in Bell’s palsy: A randomised controlled trial

    No full text
    Background: Neural mobilisation technique is effective in spinal nerve rehabilitation. However, no study has reported the effect of facial nerve mobilisation in acute Bell’s palsy. Objectives: The objective of our study was to evaluate the effect of facial neural mobilisation over conventional therapy in improving facial symmetry in patients with acute Bell’s palsy. Methods: A randomised controlled trial was conducted in the physical therapy department for 62 patients with acute Bell’s palsy. The intervention included 10 days of drug therapy including 3 weeks of conventional therapy to the experimental and the control group. However, the experimental group received additional nerve mobilisation technique aimed at mobilising the facial nerve at the origin of external auditory meatus. All participants were assessed at baseline and after three weeks using the Sunnybrook facial grading system (SBS) and Kinovea Movement Analysis Software (KMAS). Results: For primary outcome, analysis of covariance with baseline data as covariate showed a significant difference between groups for the post-test mean scores of SBS after 3 weeks (between-group difference, 9.2 [95% CI, 5.1–13.3], [Formula: see text]. Importantly, the effect size calculated by partial [Formula: see text] for neural mobilisation was 0.258 (small effect size). For secondary outcomes, independent sample t-test showed a significant difference between groups for the scores on KMAS after 3 weeks for zygomatic muscle (between-group difference, [Formula: see text] [95% CI, [Formula: see text] to [Formula: see text]], [Formula: see text]), frontalis muscle [Formula: see text] [95% CI, [Formula: see text] to [Formula: see text]], [Formula: see text], and orbicularis oris muscle [Formula: see text] [95% CI, [Formula: see text] to [Formula: see text]], [Formula: see text]. Conclusion: Facial neural mobilisation is likely to be an effective adjunctive intervention in addition to conventional therapy in improving facial symmetry in acute Bell’s palsy

    Effect of Transcranial Direct Current Stimulation Augmented with Motor Imagery and Upper-Limb Functional Training for Upper-Limb Stroke Rehabilitation: A Prospective Randomized Controlled Trial

    No full text
    Background: Combining transcranial direct current stimulation (tDCS) with other therapies is reported to produce promising results in patients with stroke. The purpose of the study was to determine the effect of combining tDCS with motor imagery (MI) and upper-limb functional training for upper-limb rehabilitation among patients with chronic stroke. Methods: A single-center, prospective, randomized controlled trial was conducted among 64 patients with chronic stroke. The control group received sham tDCS with MI, while the experimental group received real tDCS with MI. Both groups performed five different upper-limb functional training exercises coupled with tDCS for 30 min, five times per week for two weeks. Fugl-Meyer’s scale (FMA) and the Action Research Arm Test (ARAT) were used to measure the outcome measures at baseline and after the completion of the 10th session. Results: Analysis of covariance showed significant improvements in the post-test mean scores for FMA (F (414.4) = 35.79, p < 0.001; η2 = 0.37) and ARAT (F (440.09) = 37.46, p < 0.001; η2 = 0.38) in the experimental group compared to the control group while controlling for baseline scores. Conclusions: Anodal tDCS stimulation over the affected primary motor cortex coupled with MI and upper-limb functional training reduces impairment and disability of the upper limbs among patients with chronic stroke

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore