14 research outputs found

    Ex Vivo Expansion of Human Hematopoietic Stem Cells

    No full text

    RNAi screen identifies MAPK14 as a druggable suppressor of human hematopoietic stem cell expansion.

    No full text
    We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells, using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacological inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit

    Transient inhibition of NF-ÎşB signaling enhances ex vivo propagation of human hematopoietic stem cells

    No full text
    Despite extensive studies, defining culture conditions in which hematopoietic stem cells can be expanded ex vivo has been challenging. Here we show that chemical inhibition of the NF- ÎşB signaling pathway leads to a significant improvement of hematopoietic stem cell function from ex vivo cultured human umbilical cord blood derived CD34+ cells. We found a distinct peak of activation of the NF-ÎşB pathway shortly after cells were put in culture, and consequently inhibition of the pathway was both necessary and sufficient during the first 24 hours of culture where it reduced the levels of several pro-inflammatory cytokines. Taken together, NF-ÎşB pathway inhibition facilitates propagation of hematopoietic stem cells in culture and may complement other strategies for hematopoietic stem cell expansion by relieving stress signals that are induced as an immediate response to culture initiation

    Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells

    No full text
    Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin b1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins

    HMGA2 promotes long-term engraftment and myeloerythroid differentiation of human hematopoietic stem and progenitor cells

    No full text
    Identification of determinants of fate choices in hematopoietic stem cells (HSCs) is essential to improve the clinical use of HSCs and to enhance our understanding of the biology of normal and malignant hematopoiesis. Here, we show that high-mobility group AT hook 2 (HMGA2), a nonhistone chromosomal-binding protein, is highly and preferentially expressed in HSCs and in the most immature progenitor cell subset of fetal, neonatal, and adult human hematopoiesis. Knockdown of HMGA2 by short hairpin RNA impaired the long-term hematopoietic reconstitution of cord blood (CB)-derived CB CD34+ cells. Conversely, overexpression of HMGA2 in CB CD34+ cells led to overall enhanced reconstitution in serial transplantation assays accompanied by a skewing toward the myeloerythroid lineages. RNA-sequencing analysis showed that enforced HMGA2 expression in CD34+ cells induced gene-expression signatures associated with differentiation toward megakaryocyte-erythroid and myeloid lineages, as well as signatures associated with growth and survival, which at the protein level were coupled with strong activation of AKT. Taken together, our findings demonstrate a key role of HMGA2 in regulation of both proliferation and differentiation of human HSPCs

    Lysine-specific demethylase 1A (LSD1) restricts ex vivo propagation of human HSCs and is a target of UM171

    No full text
    Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. Here, we report that inhibition of the epigenetic regulator Lysine-specific histone demethylase 1A (LSD1) induces a rapid expansion of human cord blood derived CD34+ cells and promotes in vitro propagation of long-term repopulating HSCs by preventing differentiation. The phenotype and molecular characteristics of cells treated with LSD1 inhibitors were highly similar to cells treated with UM171, an agent promoting expansion of HSCs through undefined mechanisms, and currently tested in clinical trials. Strikingly, we found that LSD1 as well as other members of the LSD1 containing chromatin remodeling complex CoREST are rapidly poly-ubiquitinated and degraded upon UM171 treatment. CRISPR/Cas9 depletion of the CoREST core member, RCOR1, resulted in expansion of CD34+ cells similar to LSD1 inhibition and UM171. Taken together, LSD1 and CoREST restrict HSC expansion, and are principal targets of UM171, forming a mechanistic basis for the HSC promoting activity of UM171

    Pentaisomaltose, an Alternative to DMSO. Engraftment of Cryopreserved Human CD34+ Cells in Immunodeficient NSG Mice

    No full text
    Hematopoietic stem cell transplantation often involves the cryopreservation of stem cell products. Currently, the standard cryoprotective agent (CPA) is dimethyl sulfoxide (DMSO), which is known to cause concentration-related toxicity and side effects when administered to patients. Based on promising in vitro data from our previous study using pentaisomaltose (a 1 kDa subfraction of Dextran 1) as an alternative to DMSO for cryopreservation of hematopoietic progenitor cells (HPCs) from apheresis products, we proceeded to a preclinical model and compared the two CPAs with respect to engraftment of human hematopoietic stem and progenitor cells (HSPCs) in the immunodeficient NSG mouse model. Human HPCs from apheresis products were cryopreserved with either pentaisomaltose or DMSO, and the following outcomes were measured: (1) the post-thaw recovery of cryopreserved cells and clonogenic potential of CD34+ cells and (2) hematopoietic engraftment in NSG mice. We found that recovery and colony-forming cells data were comparable between pentaisomaltose and DMSO. The engraftment data revealed comparable human CD45+ levels in peripheral blood at 8 weeks and bone marrow at 16 weeks post transplantation. Additionally, the frequencies of CD34+CD38low/negative and myeloid/lymphoid cells in the bone marrow were comparable. We here demonstrated that long-term engrafting HSPCs were well preserved in pentaisomaltose and comparable to cells cryopreserved with DMSO. Although a clinical trial is necessary to translate these results into human use, the present data represent an important step toward the replacement of DMSO with a non-toxic alternative
    corecore