282 research outputs found

    Suppression of electron spin decoherence in a quantum dot

    Full text link
    The dominant source of decoherence for an electron spin in a quantum dot is the hyperfine interaction with the surrounding bath of nuclear spins. The decoherence process may be slowed down by subjecting the electron spin to suitable sequences of external control pulses. We investigate the performance of a variety of dynamical decoupling protocols using exact numerical simulation. Emphasis is given to realistic pulse delays and the long-time limit, beyond the domain where available analytical approaches are guaranteed to work. Our results show that both deterministic and randomized protocols are capable to significantly prolong the electron coherence time, even when using control pulse separations substantially larger than what expected from the {\em upper cutoff} frequency of the coupling spectrum between the electron and the nuclear spins. In a realistic parameter range, the {\em total width} of such a coupling spectrum appears to be the physically relevant frequency scale affecting the overall quality of the decoupling.Comment: 8 pages, 3 figures. Invited talk at the XXXVII Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 2007. Submitted to J. Mod. Op

    Dynamics of entanglement in a one-dimensional Ising chain

    Full text link
    The evolution of entanglement in a one-dimensional Ising chain is numerically studied under various initial conditions. We analyze two problems concerning the dynamics of the entanglement: (i) generation of the entanglement from the pseudopure separable state and (ii) transportation of the entanglement from one end of the chain to the other. The investigated model is a one-dimensional Ising spin-1/2 chain with nearest-neighbor interactions placed in an external magnetic field and irradiated by a weak resonant transverse field. The possibility of selective initialization of partially entangled states is considered. It was shown that, in spite of the use of a model with the direct interactions between the nearest neighbors, the entanglement between remote spins is generated.Comment: 19 pages, 7 figure

    Tribenzoatobismuth(III): a new ­polymorph

    Get PDF
    A new polymorph (ÎČ) was obtained for an active pharmaceutical ingredient, bis­muth tribenzoate, [Bi(C6H5CO2)3]. The new ÎČ-polymorph is 1.05 times denser than the previously known polymorph [Rae et al. (1998 ▶). Acta Cryst. B54, 438–442]. In the ÎČ-polymorph, the Bi atom is linked with three benzoate anions, each of them acting as a bidentate ligand, and these assemblies with C 3 point symmetry can be considered as ‘mol­ecules’. The structure of the ÎČ-polymorph has no polymeric chains, in contrast to the previously known polymorph. The ‘mol­ecules’ in the ÎČ-polymorph are stacked along [001], so that the phenyl rings of the neighbouring mol­ecules are parallel to each other. Based on the pronounced difference in the crystal structures, one can suppose that two polymorphs should differ in the dissolution kinetics and bioavailability

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Entanglement in a Solid State Spin Ensemble

    Full text link
    Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, to 10^10 spin pairs, and represents an essential requirement of a silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure v2: Updated reference

    Maternal immunization against Group B streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics.

    Get PDF
    Group B streptococcus, found in the vagina or lower gastrointestinal tract of about 10-40% of women of reproductive age, is a leading cause of early life invasive bacterial disease, potentially amenable to prevention through maternal immunization during pregnancy. Following a consultation process with global stakeholders, the World Health Organization is herein proposing priority research and development pathways and preferred product characteristics for GBS vaccines, with the aim to facilitate and accelerate vaccine licensure, policy recommendation for wide scale use and implementation

    Reply to "Localized Behavior near the Zn Impurity in YBa2Cu4O8 as Measured By Nuclear Quadrupole Resonance"

    Full text link
    Julien et al. have commented on two of our publications claiming that we have made erroneous interpretations of the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) data. Specifically, they believe that their model of an extended staggered moment about a Zn impurity is the only interpretation of the data [Julien et al., Phys. Rev Lett. 84, 3422 (2000)]. Not only does their claim ignore models presented by other authors, we show that the model of Julien et al. [Phys. Rev Lett. 84, 3422 (2000)] does not consistently reproduce all of the NMR data.Comment: 16 pages in PDF forma

    An all silicon quantum computer

    Get PDF
    A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.Comment: ReVTeX 4, 5 pages, 2 figure

    Spin-Gap Proximity Effect Mechanism of High Temperature Superconductivity

    Full text link
    When holes are doped into an antiferromagnetic insulator they form a slowly fluctuating array of ``topological defects'' (metallic stripes) in which the motion of the holes exhibits a self-organized quasi one-dimensional electronic character. The accompanying lateral confinement of the intervening Mott-insulating regions induces a spin gap or pseudogap in the environment of the stripes. We present a theory of underdoped high temperature superconductors and show that there is a {\it local} separation of spin and charge, and that the mobile holes on an individual stripe acquire a spin gap via pair hopping between the stripe and its environment; i.e. via a magnetic analog of the usual superconducting proximity effect. In this way a high pairing scale without a large mass renormalization is established despite the strong Coulomb repulsion between the holes. Thus the {\it mechanism} of pairing is the generation of a spin gap in spatially-confined {\it Mott-insulating} regions of the material in the proximity of the metallic stripes. At non-vanishing stripe densities, Josephson coupling between stripes produces a dimensional crossover to a state with long-range superconducting phase coherence. This picture is established by obtaining exact and well-controlled approximate solutions of a model of a one-dimensional electron gas in an active environment. An extended discussion of the experimental evidence supporting the relevance of these results to the cuprate superconductors is given.Comment: 30 pages, 2 figure

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic
    • 

    corecore