536 research outputs found

    Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements

    Full text link
    The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy

    A new limit on the light speed isotropy from the GRAAL experiment at the ESRF

    Full text link
    When the electrons stored in the ring of the European Synchrotron Radiation Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in flight) the lower energy of the scattered electron spectra, the Compton Edge (CE), is given by the two body photon-electron relativistic kinematics and depends on the velocity of light. A precision measurement of the position of this CE as a function of the daily variations of the direction of the electron beam in an absolute reference frame provides a one-way test of Relativistic Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF measurements improve the previously existing one-way limits, thus showing the efficiency of this method and the interest of further studies in this direction.Comment: Proceed. MG12 meeting, Paris, July, 200

    Limits on light-speed anisotropies from Compton scattering of high-energy electrons

    Full text link
    The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is considered. The absence of sidereal variations in the energy of Compton-edge photons at the ESRF's GRAAL facility constrains such anisotropies representing the first non-threshold collision-kinematics study of Lorentz violation. When interpreted within the minimal Standard-Model Extension, this result yields the two-sided limit of 1.6 x 10^{-14} at 95% confidence level on a combination of the parity-violating photon and electron coefficients kappa_{o+} and c. This new constraint provides an improvement over previous bounds by one order of magnitude.Comment: 4 pages, 4 figure

    Updated Measurement of the Strong Phase in D0 --> K+pi- Decay Using Quantum Correlations in e+e- --> D0 D0bar at CLEO

    Full text link
    We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV, to give an updated measurement of \cos\delta and a first determination of \sin\delta, where \delta is the relative strong phase between doubly Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay amplitudes. With no inputs from other experiments, we find \cos\delta = 0.81 +0.22+0.07 -0.18-0.05, \sin\delta = -0.01 +- 0.41 +- 0.04, and |\delta| = 10 +28+13 -53-0 degrees. By including external measurements of mixing parameters, we find alternative values of \cos\delta = 1.15 +0.19+0.00 -0.17-0.08, \sin\delta = 0.56 +0.32+0.21 -0.31-0.20, and \delta = (18 +11-17) degrees. Our results can be used to improve the world average uncertainty on the mixing parameter y by approximately 10%.Comment: Minor revisions, version accepted by PR

    Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-

    Full text link
    The first measurements of the coherence factor R_{K_S^0K\pi} and the average strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm decays are reported. These parameters can be used to improve the determination of the unitary triangle angle \gamma\ in B^- \rightarrow D~K\widetilde{D}K^- decays, where D~\widetilde{D} is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} = 0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7)^\circ for an unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} = (-16.6 \pm 18.4)^\circ for a region where the combined K_S^0 \pi^\pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm 0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous measurements.Comment: 38 pages. Version 3 updated to include the erratum information. Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and external inputs updated to latest best known values. Typo corrected in Eq(3)- no other consequence

    Observation of the Dalitz Decay Ds+Ds+e+eD_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}

    Full text link
    Using 586 pb1\textrm{pb}^{-1} of e+ee^{+}e^{-} collision data acquired at s=4.170\sqrt{s}=4.170 GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of Ds+Ds+e+eD_{s}^{*+} \to D_{s}^{+} e^{+} e^{-} with a significance of 5.3σ5.3 \sigma. The ratio of branching fractions \calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+} \gamma) is measured to be [0.720.13+0.15(stat)±0.10(syst)][ 0.72^{+0.15}_{-0.13} (\textrm{stat}) \pm 0.10 (\textrm{syst})]%, which is consistent with theoretical expectations

    Branching fractions for Y(3S) -> pi^0 h_b and psi(2S) -> pi^0 h_c

    Full text link
    Using e^+e^- collision data corresponding to 5.88M Y(3S) [25.9M psi(2S)] decays and acquired by the CLEO III [CLEO-c] detectors operating at CESR, we study the single-pion transitions from Y(3S) [psi(2S)] to the respective spin-singlet states h_{b[c]}. Utilizing only the momentum of suitably selected transition-pi^0 candidates, we obtain the upper limit B(Y(3S) -> pi^0 h_b) < 1.2\times 10^{-3} at 90% confidence level, and measure B(psi(2S) -> pi^0 h_c) = (9.0+-1.5+-1.3)\times 10^{-4}. Signal sensitivities are enhanced by excluding very asymmetric pi^0 -> gamma gamma candidates.Comment: 12 pages 4 figures, version published in Physical Review

    Measurement of the eta-Meson Mass using psi(2S) --> eta J/psi

    Full text link
    We measure the mass of the eta meson using psi(2S) --> eta J/psi events acquired with the CLEO-c detector operating at the CESR e+e- collider. Using the four decay modes eta --> gamma gamma, 3pi0, pi+pi-pi0, and pi+pi-gamma, we find M(eta)=547.785 +- 0.017 +- 0.057 MeV, in which the first uncertainty is statistical and the second systematic. This result has an uncertainty comparable to the two most precise previous measurements and is consistent with that of NA48, but is inconsistent at the level of 6.5sigma with the much smaller mass obtained by GEM.Comment: 10 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Search for rare and forbidden decays of charm and charmed-strange mesons to final states h^+- e^-+ e^+

    Get PDF
    We have searched for flavor-changing neutral current decays and lepton-number-violating decays of D^+ and D^+_s mesons to final states of the form h^+- e^-+ e^+, where h is either \pi or K. We use the complete samples of CLEO-c open-charm data, corresponding to integrated luminosities of 818 pb^-1 at the center-of-mass energy E_CM = 3.774 GeV containing 2.4 x 10^6 D^+D^- pairs and 602 pb^-1 at E_CM = 4.170 GeV containing 0.6 x 10^6 D^*+-_s D^-+_s pairs. No signal is observed in any channel, and we obtain 90% confidence level upper limits on branching fractions B(D^+ --> \pi^+ e^+ e^-) < 5.9 x 10^-6, B(D^+ --> \pi^- e^+ e^+) K^+ e^+ e^-) < 3.0 x 10^-6, B(D^+ --> K^- e^+ e^+) \pi^+ e^+ e^-) < 2.2 x 10^-5, B(D^+_s --> \pi^- e^+ e^+) K^+ e^+ e^-) < 5.2 x 10^-5, and B(D^+_s --> K^- e^+ e^+) < 1.7 x 10^-5.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS
    corecore