16 research outputs found
IMPACT OF GREEN HUMAN RESOURCE MANAGEMENT ON ORGANIZATIONAL CITIZENSHIP BEHAVIOR TOWARDS ENVIRONMENT: MEDIATING ROLES OF SUSTAINABILITY RATIONALES
This study examines the role of Green Human Resource Management, in understanding the employees’ perception about the value and rationale their organizations hold for sustainability, both as a business case and morality and to find out its impact on organizational citizenship behavior for the environment (OCBE), in the textile companies of Lahore, Pakistan. This is a cross-sectional study with an unknown population and includes employees of the Lahore based Textile companies of Pakistan, as the unit of analysis. Questionnaires were used to collect data from a sample size of (N = 165). Multiple regression was run and mediation Analysis in PROCESS (Andrew F. Hayes) was conducted for data analysis, which is one of the Gaps, which this study addresses. A detailed data analysis concluded that this study supports its hypotheses. Furthermore the study also concludes that Eco-Centric Rationale for Sustainability and Organization-Centric Rationale for sustainability partially mediate between Green HRM and OCBE. The sample size was kept small due to Covid-19 and the country-wide shutdown of companies. Moreover academically, this study includes only four GHRM practices while examining its impact on Organizational Citizenship behavior towards environment. Insight into the green HR practices would be beneficial to managers and academic researcher and for local and international investors who value green culture inside and outside an organization. This study theoretically contributes by examining the HRM Attribution theory in the context of Green HRM
Clinico-genomic findings, molecular docking, and mutational spectrum in an understudied population with breast cancer patients from KP, Pakistan
In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATM p. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants
Geospatial Dynamics of SARS-CoV-2 Variants during the Fifth Wave of COVID-19 in Punjab, Pakistan
Background: The study was conducted in the various districts of Punjab, Pakistan, to ascertain the incidence and epidemiology of SARS-CoV-2 variants circulating in the population during the fifth wave of COVID-19.Method: A total of 9603 nasopharyngeal swab samples of suspected patients were collected from the different districts of Punjab from December 2021 to April 2022. In the BSL-3 facility, an auto-extractor (Uni-medica) was used to extract the RNA genome. Viral detection and quantification were performed using real-time reverse transcriptase PCR. Multiplex PCR was used to target different mutations of the spike protein in order to identify SARS-CoV-2 variants.Results: 711 samples were found to be positive from a total of 9603. The Omicron variant of concern (VOC) was the predominant lineage of SARS-CoV-2 circulating at the time of sampling. Ninety-one percent proportion of COVID-19 was caused by the Omicron, followed by the wild variant (3.80%) and Delta (68.11%). Men were found to have a greater Omicron prevalence (47.96%) than women (42.05%). Furthermore, compared to older individuals (32.07%) and younger kids (10.55%), adults had the higher percentage of Omicron (47.39%).Conclusion: This study brought attention to the Omicron variant's circulation in Punjab Province, Pakistan, during the COVID-19 fifth wave.Keywords: Coronavirus; Omicron; Delta; Variant of Concern; Multiplex PCR; Punjab; Pandemic
Clinico-genomic findings, molecular docking, and mutational spectrum in an understudied population with breast cancer patients from KP, Pakistan
In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATMp. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
Global experience of HVDC composite insulators in outdoor and indoor environment
High-voltage direct current (HVDC) transmission is known as green-energy transfer technology and has recently become an attractive alternative of high-voltage alternating current (HVAC) due to its high-power transmission capability and lower power loss. Use of composite insulators on direct current (DC) transmission lines experienced rapid growth in recent years due to their high hydrophobicity and better performance in contaminated environment than conventional ceramic insulators. During their service operation on DC lines, insulators are prone to more accumulation of contaminants due to unidirectional electric field. The contaminants under wet conditions allow leakage current to flow on the insulator surface. Being organic in nature, polymeric insulators have a tendency to age under the combined effects of electrical and environmental stresses. To fully understand the long-term aging performance of DC composite insulators, a detailed survey was considered necessary. Towards that end, this paper critically summarizes worldwide experience of aging performance of composite insulators in the field as well as in laboratory conditions
Effect of Voltage Level on the Performance of Silicone Rubber in the Inclined Plane Tracking and Erosion Test
This paper investigates the effect of the test voltage level on the performance of silicone rubber in inclined plane tracking and erosion test. Silicone rubber composites, filled with either alumina tri-hydrate or ground silica to 30 wt% or 50 wt%, are tested in inclined plane tracking and erosion test under 2.5 kV, 3.5 kV, and 4.5 kV. The degradation patterns of the tested silicone rubber surfaces are found dependent on the test voltage level during the inclined plane tracking and erosion test, as the dry-band arcing on silicone rubber tends to form tracks under relatively mild test voltages and deep erosion under the critical test voltage. These findings confirm the importance of employing the critical voltage while evaluating the erosion resistance of silicone rubber in the inclined plane tracking and erosion test. In addition, the critical test voltage of silicone rubber is found dependent on the amount of filler added to the composite.A. El-Hag, M. K. Hassan, A. Abdala, and L. Al-Sulaiti acknowledge that this work was made possible by NPRP grant 12S-0227-190168 from Qatar National Research Fund (a member of Qatar Foundation) and the Qatar University International collaboration grant no. IRCC-2020-010. The statements made herein are solely the responsibility of the authors: A. El-Hag, M. K. Hassan, A. Abdala, and L. Al-Sulaiti.Scopu
Lumped Parameter Model and Electromagnetic Performance Analysis of a Single-Sided Variable Flux Permanent Magnet Linear Machine
A new Single-sided Variable Flux Permanent Magnet Linear Machine with flux bridge in mover core is proposed in this paper. The flux bridge prevents the leakage flux from the mover and converts it into flux linkage, which greatly influences the performance of the machine. First, a lumped parameter model is used to find the suitable coil combination and no-load flux linkage of the proposed machine, which greatly reduces the computational time and drive storage. Secondly, the proposed machine replaces the expensive rare earth permanent magnets with ferrite magnets and provides improved flux controlling capability under variable excitation currents. Multivariable geometric optimization is utilized to optimize the leading design parameters like split ratio, stator pole width, width and height of permanent magnet, flux bridge width, the width of mover’s tooth, and stator slot depth at constant electric and magnetic loading. The optimized design increases the flux linkage by 44.11%, average thrust force by 35%, thrust force density by 35.02%, minimizes ripples in thrust force by 23%, and detent force by 87.5%. Furthermore, the results obtained by 2D analysis are verified by 3D analysis. Thermal analysis is done to set the operating limit of the proposed machine
Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan
Globally, natural hazards have become more destructive in recent times because of rapid urban development and exposure. Consequently, significant human life loss, the damage to property and infrastructure, and the collapse of the environment directed the attention of geoscientists to control the consequences and risk management in relation to geo-hazards. In this research, an effort was made to produce a compound map, geo-visualizing the susceptibility of multi-hazards, to select suitable sites for sustainable future development and other economic activities in the region. Muzaffarabad District was chosen as a case research area due to the high magnitude of hydro-meteorological and geological hazards. On the one hand, both selected geo-hazard inventories were developed using the field survey and remote sensing data. The subjective and objective weight of all the causative factors and their classes were calculated using the assembled geospatial techniques, such as the Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) in the Geographic Information System (GIS). The results reveal that the most suitable areas are distributed in the southern and northwestern parts, which can be used for future sustainable development and other economic activities. In contrast, the eastern and western regions, including Muzaffarabad City, are within high and very susceptibility zones. Finally, more than 50% of the land area is located in very low and low susceptibility zones. The validation of the proposed model was checked by using three different techniques: the Receiver Operative Characteristic (ROC) curve, Seed Cell Area Index (SCAI), and Frequency Ratio (FR). Both ROCs, the Success Rate Curve (SRC) and the Predictive Rate Curve (PRC), showed the goodness of fit for both the selected geo-hazards: landslides (81.3%) and floods (93.2%), at 80.1% and 91.7%, respectively. All the validation techniques showed good fitness for both the individual and multi-hazard maps. The proposed model sets a baseline for policy implementation for all the stakeholders to minimize the risk and sustainable future development in areas of high frequent geo-hazards