1,137 research outputs found

    Triple Charmonium Production in pQCD

    Full text link
    We study the role of 1→21\rightarrow2 and 1→31\rightarrow3 processes in triple charmonium production. We see that the ratio of effective cross sections of TPS and DPS only moderately depends on charmonium transverse momenta, but the total DPS and TPS cross sections each separately may have rather strong dependence on charmonia transverse momenta in the central kinematics that can be studied experimentally.Comment: 19 pages, 7 figure

    Origin of Superconductivity in Boron-doped Diamond

    Full text link
    Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in Physical Review Letters(2004)

    Noninvasive Measurement of Dissipation in Colloidal Systems

    Full text link
    According to Harada and Sasa [Phys. Rev. Lett. 95, 130602 (2005)], heat production generated in a non-equilibrium steady state can be inferred from measuring response and correlation functions. In many colloidal systems, however, it is a nontrivial task to determine response functions, whereas details about spatial steady state trajectories are easily accessible. Using a simple conditional averaging procedure, we show how this fact can be exploited to reliably evaluate average heat production. We test this method using Brownian dynamics simulations, and apply it to experimental data of an interacting driven colloidal system

    Tight-binding study of structure and vibrations of amorphous silicon

    Full text link
    We present a tight-binding calculation that, for the first time, accurately describes the structural, vibrational and elastic properties of amorphous silicon. We compute the interatomic force constants and find an unphysical feature of the Stillinger-Weber empirical potential that correlates with a much noted error in the radial distribution function associated with that potential. We also find that the intrinsic first peak of the radial distribution function is asymmetric, contrary to usual assumptions made in the analysis of diffraction data. We use our results for the normal mode frequencies and polarization vectors to obtain the zero-point broadening effect on the radial distribution function, enabling us to directly compare theory and a high resolution x-ray diffraction experiment

    Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds

    Full text link
    I have carried out numerical first principles calculations of the pressure dependence of the elastic moduli for several ordered structures in the Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and an ordered FCC Al_7Li supercell. The calculations were performed using the full potential linear augmented plane wave method (LAPW) to calculate the total energy as a function of strain, after which the data was fit to a polynomial function of the strain to determine the modulus. A procedure for estimating the errors in this process is also given. The predicted equilibrium lattice parameters are slightly smaller than found experimentally, consistent with other LDA calculations. The computed elastic moduli are within approximately 10% of the experimentally measured moduli, provided the calculations are carried out at the experimental lattice constant. The LDA equilibrium shear modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2 GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli increase with pressure with the exception of BCC Li, which becomes elastically unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure

    Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation

    Get PDF
    In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity

    Dynamical properties of Au from tight-binding molecular-dynamics simulations

    Full text link
    We studied the dynamical properties of Au using our previously developed tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K were determined by computing the dynamical-matrix using a supercell approach. In addition, we performed molecular-dynamics simulations at various temperatures to obtain the temperature dependence of the lattice constant and of the atomic mean-square-displacement, as well as the phonon density-of-states and phonon-dispersion curves at finite temperature. We further tested the transferability of the model to different atomic environments by simulating liquid gold. Whenever possible we compared these results to experimental values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical Review

    Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    Full text link
    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio

    Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers

    Get PDF
    The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two

    Effects of deposition dynamics on epitaxial growth

    Full text link
    The dynamic effects, such as the steering and the screening effects during deposition, on an epitaxial growth (Cu/Cu(001)), is studied by kinetic Monte Carlo simulation that incorporates molecular dynamic simulation to rigorously take the interaction of the deposited atom with the substrate atoms into account. We find three characteristic features of the surface morphology developed by grazing angle deposition: (1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric slopes of mound sides. Regarding their dependence on both deposition angle and substrate temperature, a reasonable agreement of the simulated results with the previous experimental ones is found. The characteristic growth features by grazing angle deposition are mainly caused by the inhomogeneous deposition flux due to the steering and screening effects, where the steering effects play the major role rather than the screening effects. Newly observed in the present simulation is that the side of mound in each direction is composed of various facets instead of all being in one selected mound angle even if the slope selection is attained, and that the slope selection does not necessarily mean the facet selection.Comment: 9 pages, 10 figure
    • …
    corecore