3 research outputs found

    Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene

    Get PDF
    Maternal choline availability is essential for fetal neurogenesis. Choline deprivation (CD) causes hypomethylation of specific CpG islands in genes controlling cell cycling in fetal hippocampus. We now report that, in C57BL/6 mice, CD during gestational days 12-17 also altered methylation of the histone H3 in E17 fetal hippocampi. In the ventricular and subventricular zones, monomethyl-lysine 9 of H3 (H3K9me1) was decreased by 25% (P<0.01), and in the pyramidal layer, dimethyl-lysine 9 of H3 (H3K9me2) was decreased by 37% (P<0.05). These changes were region specific and were not observed in whole-brain preparations. Also, the same effects of CD on H3 methylation were observed in E14 neural progenitor cells (NPCs) in culture. Changes in G9a histone methyltransferase might mediate altered H3K9me2,1. Gene expression of G9a was decreased by 80% in CD NPCs (P<0.001). In CD, H3 was hypomethylated upstream of the RE1 binding site in the calbindin 1 promoter, and 1 CpG site within the calbindin1 promoter was hypermethylated. REST binding to RE1 (recruits G9a) was decreased by 45% (P<0.01) in CD. These changes resulted in increased expression of calbindin 1 in CD (260%; P<0.05). Thus, CD modulates histone methylation in NPCs, and this could underlie the observed changes in neurogenesis

    Dietary docosahexaenoic acid supplementation modulates hippocampal development in the pemt-/- mouse

    Get PDF
    The development of fetal brain is influenced by nutrients such as docosahexaenoic acid (DHA, 22:6) and choline. Phosphatidylethanolamine-N-methyltransferase (PEMT) catalyzes the biosynthesis of phosphatidylcholine from phosphatidylethanolamine enriched in DHA and many humans have functional genetic polymorphisms in the PEMT gene. Previously, it was reported that Pemt-/- mice have altered hippocampal development. The present study explores whether abnormal phosphatidylcholine biosynthesis causes altered incorporation of DHA into membranes, thereby influencing brain development, and determines whether supplemental dietary DHA can reverse some of these changes. Pregnant C57BL/6 wild type (WT) and Pemt-/- mice were fed a control diet, or a diet supplemented with 3 g/kg of DHA, from gestational day 11 to 17. Brains from embryonic day 17 fetuses derived from Pemt-/- dams fed the control diet had 25-50% less phospholipid-DHA as compared with WT (p < 0.05). Also, they had 60% more neural progenitor cell proliferation (p < 0.05), 60% more neuronal apoptosis (p < 0.01), and 30% less calretinin expression (p < 0.05; a marker of neuronal differentiation) in the hippocampus compared with WT. The DHA-supplemented diet increased fetal brain Pemt-/- phospholipid-DHA to WT levels, and abrogated the neural progenitor cell proliferation and apoptosis differences. Although this diet did not change proliferation in the WT group, it halved the rate of apoptosis (p < 0.05). In both genotypes, the DHA-supplemented diet increased calretinin expression 2-fold (p < 0.05). These results suggest that the changes in hippocampal development in the Pemt-/- mouse could be mediated by altered DHA incorporation into membrane phospholipids, and that maternal dietary DHA can influence fetal brain development

    含胆碱饮食的重要性

    No full text
    corecore