4 research outputs found
Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite
AbstractSince hydroxyapatite-based materials have similar composition and crystallinity as natural calcified tissues, can be used for bone/tissue engineering. In the present study a novel nanocomposite based on bioceramics such as Natural Hydroxyapatite (NHA) and Baghdadite (BAG), was sintered by spark plasma sintering (SPS) technique. The prepared composite was characterized using scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Brunauer–Emmett–Teller (BET) techniques. The porosity of the samples was measured by Archimedes method. The cold crushing strength (CCS) test was applied to evaluate their mechanical properties. Our results demonstrated that NHA-30wt. %BAG nanocomposite specimens have the lower CCS in comparison with other examined composites. Consequently, NHA/BAG samples exhibited acceptable mechanical properties and could be suitable candidates for bone tissue engineering applications especially orthopaedic fields
Preparation, Characterization, Mechanical Properties and Electrical Conductivity Assessment of Novel Polycaprolactone/Multi-Wall Carbon Nanotubes Nanocomposites for Myocardial Tissue Engineering
Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. In this study, nanocomposite scaffolds composed of polycaprolactone and multi-walled carbon nanotubes, containing different amounts of carbon nanotubes, were prepared via solvent casting and vacuum drying technique, for myocardial tissue engineering. Characterization techniques such as Fourier transform infrared spectroscopy and scanning electron microscopy were used. Furthermore, mechanical properties of the prepared polycaprolactone and nanocomposite scaffolds were determined. The results have revealed that the scaffolds contain sufficient porosity with highly interconnected pore morphology. Addition of carbon nanotubes to the polycaprolactone matrix has improved conductivity of the prepared scaffold. The desired distribution of carbon nanotubes with a few agglomerates was observed in the nanocomposite scaffolds by scanning electron microscopy. Polycaprolactone/multi-walled carbon nanotubes nanocomposite scaffold containing 1 wt% of carbon nanotubes has shown the best mechanical behavior and electrical conductivity. In conclusion, the electrically conductive and nanofibrous polycaprolactone/1 wt% multi-wall carbon nanotubes scaffold could be used as an appropriate construct for myocardium regeneration and it deserves further investigations