181 research outputs found

    Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis

    Get PDF
    INTRODUCTION: Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. METHODS: We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. RESULTS: Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. CONCLUSIONS: We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual compound

    Evidence That beta 1-Integrin Is Required for the Anti-Viability and Anti-Proliferative Effect of Resveratrol in CRC Cells

    Get PDF
    The beta 1-integrin receptor is broadly expressed on tumor and other cells in the tumor microenvironment (TME), and is an unfavorable prognostic factor for cancers. Nature-derived resveratrol has preventive and apoptotic effects on tumors, but whether resveratrol can exert its suppressive actions on TME-induced tumorigenesis through beta 1-integrin on the surface of CRC cells is still unknown. HCT116 or SW480 cells were exposed to inhibitory antibodies against beta 1-integrin, bacitracin (selective beta 1-integrin inhibitor), integrin-binding RGD (Arg-Gly-Asp) peptide, and/or resveratrol. We evaluated the anti-tumor actions and signaling impacts of resveratrol in colorectal cancer (CRC)-TME. We found that resveratrol completely altered the beta 1-integrin distribution pattern and expression on the surface of CRC cells in TME. Moreover, resveratrol down-regulated CRC cell proliferation, colony formation, viability, and up-regulated apoptosis in a concentration-dependent way. These actions of resveratrol were antagonized mainly by inhibitory antibodies against beta 1-integrin but not beta 5-integrin, and by an integrin-binding RGD peptide but not by RGE peptide, and by bacitracin in TME. Similarly, resveratrol-blocked TME-induced p65-NF-kB and its promoted gene markers linked to proliferation (cyclin D1), invasion (focal adhesion kinase, FAK), or apoptosis (caspase-3), were largely abrogated by anti-beta 1-integrin or RGD peptide, suggesting that beta 1-integrin is a potential transmission pathway for resveratrol/integrin down-stream signaling in CRC cells. The current results highlight, for the first time, the important gateway role of beta 1-integrins as signal carriers for resveratrol on the surfaces of HCT116 and SW480 cells, and their functional cooperation for the modulatory effects of resveratrol on TME-promoted tumorigenesis

    Curcumin Chemosensitizes 5-Fluorouracil Resistant MMR-Deficient Human Colon Cancer Cells in High Density Cultures

    Get PDF
    Objective Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50–60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. Methods High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Results Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Conclusion Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population

    Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment

    Get PDF
    Introduction: Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterised by joint inflammation and cartilage degradation. Although mesenchymal stem cell (MSC)-like progenitors are resident in the superficial zone of articular cartilage, damaged tissue does not possess the capacity for regeneration. The high levels of pro-inflammatory cytokines present in OA/RA joints may impede the chondrogenic differentiation of these progenitors. Interleukin (IL)-1 beta activates the transcription factor nuclear factor-KB (NF-KB), which in turn activates proteins involved in matrix degradation, inflammation and apoptosis. Curcumin is a phytochemical capable of inhibiting IL-1 beta-induced activation of NF-KB and expression of apoptotic and pro-inflammatory genes in chondrocytes. Therefore, the aim of the present study was to evaluate the influence of curcumin on IL-1 beta-induced NF-KB signalling pathway in MSCs during chondrogenic differentiation. Methods: MSCs were either cultured in a ratio of 1:1 with primary chondrocytes in high-density culture or cultured alone in monolayer with/without curcumin and/or IL-1 beta. Results: We demonstrate that although curcumin alone does not have chondrogenic effects on MSCs, it inhibits IL-1 beta-induced activation of NF-KB, activation of caspase-3 and cyclooxygenase-2 in MSCs time and concentration dependently, as it does in chondrocytes. In IL-1 beta stimulated co-cultures, four-hour pre-treatment with curcumin significantly enhanced the production of collagen type II, cartilage specific proteoglycans (CSPGs), beta 1-integrin, as well as activating MAPKinase signaling and suppressing caspase-3 and cyclooxygenase-2. Conclusions: Curcumin treatment may help establish a microenvironment in which the effects of pro-inflammatory cytokines are antagonized, thus facilitating chondrogenesis of MSC-like progenitor cells in vivo. This strategy may support the regeneration of articular cartilage

    Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation.

    Get PDF
    Osteogenic repair in response to bone injury is characterized by activation and differentiation of mesenchymal stem cells (MSCs) to osteoblasts. This study determined whether activation of Sirt-1 (a NAD(+)-dependent histone deacetylase) by the phytoestrogen resveratrol affects osteogenic differentiation. Monolayer and high-density cultures of MSCs and pre-osteoblastic cells were treated with an osteogenic induction medium with/without the Sirt-1 inhibitor nicotinamide or/and resveratrol in a concentration dependent manner. MSCs and pre-osteoblastic cells differentiated to osteoblasts when exposed to osteogenic-induction medium. The osteogenic response was blocked by nicotinamide, resulting in adipogenic differentiation and expression of the adipose transcription regulator PPAR-γ (peroxisome proliferator-activated receptor). However, in nicotinamide-treated cultures, pre-treatment with resveratrol significantly enhanced osteogenesis by increasing expression of Runx2 (bone specific transcription factor) and decreasing expression of PPAR-γ. Activation of Sirt-1 by resveratrol in MSCs increased its binding to PPAR-γ and repressed PPAR-γ activity by involving its cofactor NCoR (nuclear receptor co-repressor). The modulatory effects of resveratrol on nicotinamide-induced expression of PPAR-γ and its cofactor NCoR were found to be mediated, at least in part, by Sirt-1/Runx2 association and deacetylation of Runx2. Finally, knockdown of Sirt-1 by using antisense oligonucleotides downregulated the expression of Sirt-1 protein and abolished the inhibitory effects of resveratrol, namely nicotinamide-induced Sirt-1 suppression and Runx2 acetylation, suggesting that the acetylated content of Runx2 is related to downregulated Sirt-1 expression. These data support a critical role for Runx2 acetylation/deacetylation during osteogenic differentiation in MSCs in vitro. (242 words in abstract)

    IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway.

    Get PDF
    Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects

    Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment

    Get PDF
    Introduction: P53 represents a key player in apoptosis-induction in cancers including colorectal cancer (CRC) that ranks third worldwide in cancer prevalence as well as mortality statistics. Although a pro-apoptotic effect of resveratrol has been repeatedly proven in CRC cells, its pathway mechanisms are not completely understood, as there are controversial statements in the literature regarding its activation or inhibition of the counteracting proteins Sirt-1 and p53. Methods: CRC cells as wild-type (HCT-116 WT) or p53-deficient (HCT-116 p53-/-) were cultured using multicellular tumor microenvironment (TME) cultures containing T-lymphocytes and fibroblasts to elucidate the role of p53/Sirt-1 modulation in resveratrol’s concentration-dependent, pro-apoptotic, and thus anti-cancer effects. Results: Resveratrol dose-dependently inhibited viability, proliferation, plasticity as well as migration, and induced apoptosis in HCT-116 WT more effectively than in HCT-116 p53-/- cells. Moreover, resveratrol stimulated Sirt-1 expression when administered at low concentrations (10µM) to CRC-TME. In parallel, similar to the knockdown of Sirt-1 at the mRNA level, treatment with high-concentration resveratrol boosted the acetylation of p53, the expression of p21, Bax, cytochrome C, caspase-3, and ultimately induced apoptosis in CRC WT but not in CRC p53-/- cells. Notably, increasing concentrations of resveratrol were found to promote hyperacetylation of p53 and FOXO3a as post-translational substrates of Sirt-1, indicating a negative regulatory loop between Sirt-1 and p53. Discussion: These results demonstrate for the first time, a negative reciprocal crosstalk between the regulatory circuits of p53 and Sirt-1, consequently, apoptosis induction by higher resveratrol concentrations in CRC-TME

    β1-Integrin plays a major role in resveratrol-mediated anti-invasion effects in the CRC microenvironment

    Get PDF
    Background: Tumor microenvironment (TME) is one of the most important factors in tumor aggressiveness, with an active exchange between tumor and other TME-associated cells that promotes metastasis. The tumor-inhibitory effect of resveratrol on colorectal cancer (CRC) cells has been frequently reported. However, whether resveratrol can specifically suppress TME-induced CRC invasion via β1-integrin receptors has not been fully elucidated yet. Methods: Two CRC cell lines (HCT116, RKO) were cultured in multicellular, pro-inflammatory 3D-alginate TME cultures (containing fibroblasts, T-lymphocytes) to investigate the role of β1-integrin receptors in the anti-invasive and anti-metastatic effect of resveratrol by antisense oligonucleotides (ASO). Results: Our results show that resveratrol dose-dependently suppressed the migration-promoting adhesion adapter protein paxillin and simultaneously enhanced the expression of E-cadherin associated with the phenotype change of CRC cells, and their invasion. Moreover, resveratrol blocked TME-induced phosphorylation and nuclear translocation of p65-NF-κB, which was associated with changes in the expression pattern of epithelial-mesenchymal-transition-related biomarkers (slug, vimentin, E-cadherin), metastasis-related factors (CXCR4, MMP-9, FAK), and apoptosis (caspase-3). Finally, transient transfection of β1-integrin, in contrast to knockdown of NF-κB, abrogated most anti-invasive, anti-metastatic effects as well as downstream signaling of resveratrol, resulting in a concomitant increase in CRC cell invasion, indicating a central role of β1-integrin receptors in the anti-invasive function of resveratrol. Conclusion: These results demonstrate for the first time that silencing β1-integrins may suppress, at least in part the inhibitory effects of resveratrol on invasion and migration of CRC cells, underscoring the crucial homeostatic role of β1-integrin receptors

    Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells

    Get PDF
    Sirt1 is a NAD(+)-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, metabolism and survival, as well as acts as an important subcellular target of resveratrol. The complex mechanisms underlying Sirt1 signaling during carcinogenesis remain controversial, as it can serve both as a tumor promoter and suppressor. Whether resveratrol-mediated chemopreventive effects are mediated via Sirt1 in CRC growth and metastasis remains unclear;which was the subject of this study. We found that resveratrol suppressed proliferation and invasion of two different human CRC cells in a dose-dependent manner, and interestingly, this was accompanied with a significant decrease in Ki-67 expression. By transient transfection of CRC cells with Sirt1-ASO, we demonstrated that the anti-tumor effects of resveratrol on cells was abolished, suggesting the essential role of this enzyme in the resveratrol signaling pathway. Moreover, resveratrol downregulated nuclear localization of NF-kappa B, NF-kappa B phosphorylation and its acetylation, causing attenuation of NF-kappa B-regulated gene products (MMP-9, CXCR4) involved in tumor-invasion and metastasis. Finally, Sirt1 was found to interact directly with NF-kappa B, and resveratrol did not suppress Sirt1-ASO-induced NF-kappa B phosphorylation, acetylation and NF-kappa B-regulated gene products. Overall, our results demonstrate that resveratrol can suppress tumorigenesis, at least in part by targeting Sirt1 and suppression of NF-kappa B activation

    Curcumin attenuates environment-derived osteoarthritis by Sox9/NF-kB signaling axis

    Get PDF
    Inflammation has a fundamental impact on the pathophysiology of osteoarthritis (OA), a common form of degenerative arthritis. It has previously been established that curcumin, a component of turmeric (Curcuma longa), has anti-inflammatory properties. This research evaluates the potentials of curcumin on the pathophysiology of OA in vitro. To explore the anti-inflammatory efficacy of curcumin in an inflamed joint, an osteoarthritic environment (OA-EN) model consisting of fibroblasts, T-lymphocytes, 3D-chondrocytes is constructed and co-incubated with TNF-α, antisense oligonucleotides targeting NF-kB (ASO-NF-kB), or an IkB-kinase (IKK) inhibitor (BMS-345541). Our results show that OA-EN, similar to TNF-α, suppresses chondrocyte viability, which is accompanied by a significant decrease in cartilage-specific proteins (collagen II, CSPG, Sox9) and an increase in NF-kB-driven gene proteins participating in inflammation, apoptosis, and breakdown (NF-kB, MMP-9, Cox-2, Caspase-3). Conversely, similar to knockdown of NF-kB at the mRNA level or at the IKK level, curcumin suppresses NF-kB activation, NF-kB-promotes gene proteins derived from the OA-EN, and stimulates collagen II, CSPG, and Sox9 expression. Furthermore, co-immunoprecipitation assay shows that curcumin reduces OA-EN-mediated inflammation and chondrocyte apoptosis, with concomitant chondroprotective effects, due to modulation of Sox-9/NF-kB signaling axis. Finally, curcumin selectively hinders the interaction of p-NF-kB-p65 directly with DNA—this association is disrupted through DTT. These results suggest that curcumin suppresses inflammation in OA-EN via modulating NF-kB-Sox9 coupling and is essential for maintaining homeostasis in OA by balancing chondrocyte survival and inflammatory responses. This may contribute to the alternative treatment of OA with respect to the efficacy of curcumin
    corecore