111 research outputs found

    Depth-Optimized Reversible Circuit Synthesis

    Full text link
    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.Comment: 13 pages, 6 figures, 5 tables; Quantum Information Processing (QINP) journal, 201

    S-Restricted Compositions Revisited

    Full text link
    An S-restricted composition of a positive integer n is an ordered partition of n where each summand is drawn from a given subset S of positive integers. There are various problems regarding such compositions which have received attention in recent years. This paper is an attempt at finding a closed- form formula for the number of S-restricted compositions of n. To do so, we reduce the problem to finding solutions to corresponding so-called interpreters which are linear homogeneous recurrence relations with constant coefficients. Then, we reduce interpreters to Diophantine equations. Such equations are not in general solvable. Thus, we restrict our attention to those S-restricted composition problems whose interpreters have a small number of coefficients, thereby leading to solvable Diophantine equations. The formalism developed is then used to study the integer sequences related to some well-known cases of the S-restricted composition problem

    Algebraic Characterization of CNOT-Based Quantum Circuits with its Applications on Logic Synthesis

    Full text link
    The exponential speed up of quantum algorithms and the fundamental limits of current CMOS process for future design technology have directed attentions toward quantum circuits. In this paper, the matrix specification of a broad category of quantum circuits, i.e. CNOT-based circuits, are investigated. We prove that the matrix elements of CNOT-based circuits can only be zeros or ones. In addition, the columns or rows of such a matrix have exactly one element with the value of 1. Furthermore, we show that these specifications can be used to synthesize CNOT-based quantum circuits. In other words, a new scheme is introduced to convert the matrix representation into its SOP equivalent using a novel quantum-based Karnaugh map extension. We then apply a search-based method to transform the obtained SOP into a CNOT-based circuit. Experimental results prove the correctness of the proposed concept.Comment: 8 pages, 13 figures, 10Th EUROMICRO Conference on Digital System Design, Architectures, Methods and Tools, Germany, 200
    • …
    corecore