5 research outputs found

    PRIMARY MALIGNANT MELANOMA UTERINE CERVIX

    Get PDF
    A 40-year-old premenopausal female presented with foul-smelling per vaginal discharge for 3 months. Diagnostic work revealed a locally advanced primary malignant melanoma of uterine cervix. The patient declined pelvic surgery and was treated with Dacarbazine. Malignant melanoma is a rare tumour of skin and has been ranked in the top ve cancers of Australia and Sweden. It is a tumour of melanocytes which forms melanin pigment in the skin. In men, the most common site is trunk while in females common site is limbs. However, melanoma can arise from mucosal surfaces where the melanocytes are present. Most common mucosal sites are head and neck followed by female genital tract. Key words: Cervix, dacarbazine, malignant melanoma

    Static pulmonary nodules from thyroid malignancy

    No full text
    Papillary carcinoma of thyroid tends to be indolent. This is an unusual case of papillary carcinoma of thyroid with asymptomatic pulmonary metastasis for more than a decade, finally presenting with mild respiratory symptoms in a 21-year-old female. Fine needle aspiration and cytology (FNA-C) of a nodule in the lungs revealed features consistent with a papillary carcinoma of thyroid. Confirmed on thyroidectomy specimen. She subsequently received Iodine-131 (I131). A follow-up radio-iodide scan, 48 hours after, revealed diffuse uptake within the lung parenchyma. With static nodular shadowing on radiograph, a metastatic origin, in particular that of the thyroid, should be considered. I131 scintigraphy can help support the diagnosis of carcinoma of thyroid

    Impact of antenna and beam-selection-based sectored relay planning for performance evaluation of 4G LTE-A tri-sectored cell

    No full text
    The deployment of Relay Nodes (RNs) in 4G LTE-A networks, mainly originating from the wireless backhaul link, provides an excellent network planning tool to enhance system performance. Better coordination between the base station and relays to mitigate inter-cell interference becomes an important aspect of achieving the required system performance, not only in the single-cell scenario, but also in multi-cell scenarios. In this paper, we model and analyze two basic approaches for designing a 4G LTE-A tri-sectored cellular system. The approaches are based on Antenna Selection Sectored Relaying (ASSR) and Beam Selection Sectored Relaying (BSSR). The main purpose of the proposed schemes is to enhance system performance by improving the quality of the wireless relay backhaul link. In this technique, antenna selection takes into consideration Non-Line-Of-Sight (NLOS) communication, whereas BSSR considers the case of Line-Of-Sight (LOS) communication using heuristic beam forming approach. The resource allocation problem has also been investigated for relay based cooperative LTE-A tri-sectored cell in the downlink. The best possible location for relay node in the sector, power allocation and MIMO channel modeling is formulated as an optimization problem with the aim of maximizing the end to end link rate and the Signal to Interference plus Noise Ratio (SINR) of 4G LTE-A systems. Power allocation/optimization has been solved by means of the duality equation of the stationary Karush-Kuhn-Tucker (KKT) condition and is used to derive optimal values for the beam forming vector on both the relay as well as the access link. The performance of the proposed scheme is verified through simulations carried out using MATLAB software. The simulation results show a significant improvement in the SINR, throughput capacity, and coverage area of the 4G LTE-A cell, while guaranteeing better quality of service. Keywords: Long Term Evolution-Advanced (LTE-A), Relay Node (RN), Sectored Relaying (SR), Antenna Selection Sectored Relaying (ASSR), Beam Selection Sectored Relaying (BSSR), Karush-Kuhn-Tucker (KKT

    Prophylactic biological mesh reinforcement versus standard closure of stoma site (ROCSS): a multicentre, randomised controlled trial

    No full text
    Background: Closure of an abdominal stoma, a common elective operation, is associated with frequent complications; one of the commonest and impactful is incisional hernia formation. We aimed to investigate whether biological mesh (collagen tissue matrix) can safely reduce the incidence of incisional hernias at the stoma closure site. Methods: In this randomised controlled trial (ROCSS) done in 37 hospitals across three European countries (35 UK, one Denmark, one Netherlands), patients aged 18 years or older undergoing elective ileostomy or colostomy closure were randomly assigned using a computer-based algorithm in a 1:1 ratio to either biological mesh reinforcement or closure with sutures alone (control). Training in the novel technique was standardised across hospitals. Patients and outcome assessors were masked to treatment allocation. The primary outcome measure was occurrence of clinically detectable hernia 2 years after randomisation (intention to treat). A sample size of 790 patients was required to identify a 40% reduction (25% to 15%), with 90% power (15% drop-out rate). This study is registered with ClinicalTrials.gov, NCT02238964. Findings: Between Nov 28, 2012, and Nov 11, 2015, of 1286 screened patients, 790 were randomly assigned. 394 (50%) patients were randomly assigned to mesh closure and 396 (50%) to standard closure. In the mesh group, 373 (95%) of 394 patients successfully received mesh and in the control group, three patients received mesh. The clinically detectable hernia rate, the primary outcome, at 2 years was 12% (39 of 323) in the mesh group and 20% (64 of 327) in the control group (adjusted relative risk [RR] 0·62, 95% CI 0·43–0·90; p=0·012). In 455 patients for whom 1 year postoperative CT scans were available, there was a lower radiologically defined hernia rate in mesh versus control groups (20 [9%] of 229 vs 47 [21%] of 226, adjusted RR 0·42, 95% CI 0·26–0·69; p<0·001). There was also a reduction in symptomatic hernia (16%, 52 of 329 vs 19%, 64 of 331; adjusted relative risk 0·83, 0·60–1·16; p=0·29) and surgical reintervention (12%, 42 of 344 vs 16%, 54 of 346: adjusted relative risk 0·78, 0·54–1·13; p=0·19) at 2 years, but this result did not reach statistical significance. No significant differences were seen in wound infection rate, seroma rate, quality of life, pain scores, or serious adverse events. Interpretation: Reinforcement of the abdominal wall with a biological mesh at the time of stoma closure reduced clinically detectable incisional hernia within 24 months of surgery and with an acceptable safety profile. The results of this study support the use of biological mesh in stoma closure site reinforcement to reduce the early formation of incisional hernias. Funding: National Institute for Health Research Research for Patient Benefit and Allergan
    corecore