2 research outputs found

    Nitric oxide alleviates salt stress inhibited photosynthetic response by interacting with sulfur assimilation in mustard

    Get PDF
    The role of nitric oxide (NO) and/or sulfur (S) on stomatal and photosynthetic responses was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 µM NO (as sodium nitroprusside) and 200 mg S kg-1 soil (excess-S) more prominently influenced stomatal behaviour, photosynthetic and growth responses in the absence of salt stress and alleviated salt stress effects on photosynthesis. Plants receiving combined treatment of NO plus excess-S showed well-developed thylakoid membrane and properly stacked grana lamellae under salt stress, while the chloroplasts from salt-stressed plants had disorganized thylakoids. Moreover, the leaves from the NO and excess-S treated plants exhibited lower superoxide ion accumulation under salt stress, induced activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants resulted in increased production of cysteine (Cys) and glutathione (GSH) reduced. These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation.The results suggest that NO improves photosynthetic responses of plants grown under salt stress more effectively when plants received excess-S. Thus, excess-S conditions may be adopted for higher impact of NO in the reversal of salt stress effects on photosynthesis

    Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    Get PDF
    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. The significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms those are expected to govern SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context
    corecore