23 research outputs found

    Toxicity reduction in the treatment of HPV positive oropharyngeal cancer:emerging combined modality approaches

    Get PDF
    Human papillomavirus positive (HPV+) oropharyngeal squamous cell carcinoma (OPC) is a distinct clinical entity within the head and neck cancers, with a unique epidemiology and, in general, a favorable prognosis. Because of this favorable prognosis, researchers have considered de-intensifying the current standard treatment of HPV+ OPC in order to reduce acute and late treatment related toxicity without compromising outcome. Current ongoing trials can be divided in three main categories: de-intensification of the chemotherapy by replacing concomitant platinum-based chemotherapy with the EGFR-inhibitor cetuximab, or de-intensification of the radiation dose of either the primary radiotherapy of selected, good-responding patients after induction chemotherapy or of the adjuvant radiotherapy based on pathology features after primary surgery. Despite the good prognosis of the majority of HPV+ OPC patients, a proportion of them still have poor prognosis. This unmet need has led clinical research on new treatment strategies focused on influencing the unique micro-environment of HPV+ OPC with for example immunotherapy. This article summarizes the current understanding regarding the optimal treatment of non-metastatic HPV+ OPC. Ongoing and published clinical trials regarding de-intensification strategies, immunotherapy and proton therapy are described focusing on the rationale and underlying evidence of these emerging treatment strategies. Nevertheless, until the results of the ongoing trials are known, the treatment of HPV+ OPC in clinical practice should remain identical to the treatment of HPV negative OPC

    Epithelium and Stroma Identification in Histopathological Images using Unsupervised and Semi-supervised Superpixel-based Segmentation

    Get PDF
    We present superpixel-based segmentation frameworks for unsupervised and semi-supervised epithelium-stroma identification in histopathological images or oropharyngeal tissue micro arrays. A superpixel segmentation algorithm is initially used to split-up the image into binary regions (superpixels) and their colour features are extracted and fed into several base clustering algorithms with various parameter initializations. Two Consensus Clustering (CC) formulations are then used: the Evidence Accumulation Clustering (EAC) and the voting-based consensus function. These combine the base clustering outcomes to obtain a more robust detection of tissue compartments than the base clustering methods on their own. For the voting-based function, a technique is introduced to generate consistent labellings across the base clustering results. The obtained CC result is then utilized to build a self-training Semi-Supervised Classification (SSC) model. Unlike supervised segmentations, which rely on large number of labelled training images, our SSC approach performs a quality segmentation while relying on few labelled samples. Experiments conducted on forty-five hand-annotated images of oropharyngeal cancer tissue microarrays show that (a) the CC algorithm generates more accurate and stable results than individual clustering algorithms; (b) the clustering performance of the voting-based function outperforms the existing EAC; and (c) the proposed SSC algorithm outperforms the supervised methods, which is trained with only a few labelled instances

    Mereotopological Correction of Segmentation Errors in Histological Imaging

    Get PDF
    In this paper we describe mereotopological methods to programmatically correct image segmentation errors, in particular those that fail to fulfil expected spatial relations in digitised histological scenes. The proposed approach exploits a spatial logic called discrete mereotopology to integrate a number of qualitative spatial reasoning and constraint satisfaction methods into imaging procedures. Eight mereotopological relations defined on binary region pairs are represented as nodes in a set of 20 directed graphs, where the node-to-node graph edges encode the possible transitions between the spatial relations after set-theoretic and discrete topological operations on the regions are applied. The graphs allow one to identify sequences of operations that applied to regions of a given relation, and enables one to resegment an image that fails to conform to a valid histological model into one that does. Examples of the methods are presented using images of H&E-stained human carcinoma cell line cultures
    corecore