237 research outputs found

    Are the existing guideline values adequate to protect soil health from inorganic mercury contamination?

    Full text link
    © 2018 Elsevier Ltd Currently, data that guide safe concentration ranges for inorganic mercury in the soil are lacking and subsequently, threaten soil health. In the present study, a species sensitivity distribution (SSD) approach was applied to estimate critical mercury concentration that has little (HC 5 ) or no effect (PNEC) on soil biota. Recently published terrestrial toxicity data were incorporated in the approach. Considering total mercury content in soils, the estimated HC 5 was 0.6 mg/kg, and the PNEC was 0.12–0.6 mg/kg. Whereas, when only water-soluble mercury fractions were considered, these values were 0.04 mg/kg and 0.008–0.04 mg/kg, respectively

    Bioremediation of mercury: not properly exploited in contaminated soils!

    Full text link
    © 2017, Springer-Verlag Berlin Heidelberg. Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research

    A Study on Effect of Microbial Growth on Dentures in Relation to Denture Storage and Overnight Soaking of Dentures in Various Soaking Solutions -An In Vitro Study

    Get PDF
    Background: Denture hygiene is essential for preventing microbial growth and associated oral health issues in denture wearers. This in vitro study investigates the effect of denture storage conditions and overnight soaking in various solutions on microbial growth on denture surfaces. Methods: Standardized denture models were inoculated with Candida albicans, Streptococcus mutans, and Staphylococcus aureus and subjected to dry and moist storage conditions. Soaking solutions included commercial denture cleanser, sodium hypochlorite, hydrogen peroxide, and distilled water (control). Microbial assessments were conducted at specified intervals. Results: Moist storage significantly promoted microbial growth on dentures compared to dry storage. Soaking solutions, especially commercial denture cleanser, sodium hypochlorite, and hydrogen peroxide, demonstrated substantial reductions in microbial counts compared to distilled water. Conclusion: Denture storage conditions and choice of soaking solution significantly influence microbial growth on dentures. Moist storage and the use of antimicrobial solutions are effective strategies for reducing microbial colonization. Keywords: Denture hygiene, microbial growth, denture storage, soaking solutions, oral health

    Bioaccumulation and Tolerance Indices of Cadmium in Wheat Plants Grown in Cadmium-Spiked Soil: Health Risk Assessment

    Get PDF
    Farmers use wastewater for irrigation in many developing countries, for example Bangladesh, India, China, Sri Lanka and Vietnam because they have limited access to clean water. This study explored cadmium (Cd) bioaccumulation in two spring wheat cultivars (cv. Mustang and Lancer), which were grown in different concentrations of Cd (0,1, 2, 4, and 8 mg kg−1) in agricultural soils. The half maximum inhibitory concentration (IC50) values were 4.21 ± 0.29 and 4.02 ± 0.95, respectively, whereas the maximum health risk index (HRI) was 3.85 ± 0.049 and 5.33 ± 0.271, respectively, for Mustang and Lancer. In other words, the malondialdehyde content increased significantly in Mustang (around five-fold) and Lancer (around four-fold) compared with the control treatment. Results revealed that Cd content was well above the acceptable limit (HRI >1) in the two cultivars when exposed to different levels of Cd stress. The tolerant cultivar (Mustang) has potential to chelate Cd in the nonedible parts of plants in variable fractions and can be used efficiently to improve growth and macro- and micro-nutrients content while reducing Cd concentration in plants in Cd-contaminated soil. It can also diminish the HRI, which may help to protect humans from Cd risks. The two cultivars’ nutrient availability and sorption capacity significantly shape their survival and adaptability under Cd stress. Based on what is documented in the current study, we can conclude that Mustang is more tolerant and poses fewer health hazards to people than Lancer because of its capacity to maintain grain macro- and micro-nutrients under Cd stress

    Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand.

    Get PDF
    The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions

    Investigation of the mechanism of chromium removal in (3-aminopropyl)trimethoxysilane functionalized mesoporous silica

    Get PDF
    We are proposed that a possible mechanism for Cr(VI) removal by functionalized mesoporous silica. Mesoporous silica was functionalized with (3-aminopropyl)trimethoxysilane (APTMS) using the post-synthesis grafting method. The synthesized materials were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), N-2 adsorption-desorption analysis, Fourier-transform infrared (FT-IR), thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS) to confirm the pore structure and functionalization of amine groups, and were subsequently used as adsorbents for the removal of Cr(VI) from aqueous solution. As the concentration of APTMS increases from 0.01 M to 0.25 M, the surface area of mesoporous silica decreases from 857.9 m(2)/g to 402.6 m(2)/g. In contrast, Cr(VI) uptake increases from 36.95 mg/g to 83.50 mg/g. This indicates that the enhanced Cr(VI) removal was primarily due to the activity of functional groups. It is thought that the optimum concentration of APTMS for functionalization is approximately 0.05 M. According to XPS data, NH3+ and protonated NH2 from APTMS adsorbed anionic Cr(VI) by electrostatic interaction and changed the solution pH. Equilibrium data are well fitted by Temkin and Sips isotherms. This research shows promising results for the application of amino functionalized mesoporous silica as an adsorbent to removal Cr(VI) from aqueous solution

    Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil

    Get PDF
    Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture O. intermedium BCR400 significantly enhanced its chromium reduction rate. The activation energy of AQS-mediated Cr(VI) reduction (120.69 KJ/mol) was 1.1-fold lower than non-mediated Cr(VI) reduction. An increase in the activities of quinone reductase and chromate reductase in cells grown in presence of AQS/AQS + Cr(VI) suggests their role in reduction of Cr(VI) by O. intermedium. Both chromate reductase and quinone reductase activities were FAD independent, required NADH as reductant, displayed maximum activity at pH (7.0) and temperature (30 °C). Thus Cr(VI) bioremediation potential of O. intermedium can be enhanced by augmentation of system with AQS as redox mediator

    Identification of genes required for soil survival in Burkholderia thailandensis by transposon-directed insertion site sequencing.

    Get PDF
    Transposon-directed insertion site sequencing was used to identify genes required by Burkholderia thailandensis to survive in plant/soil microcosms. A total of 1,153 genetic loci fulfilled the criteria as being likely to encode survival characteristics. Of these, 203 (17.6 %) were associated with uptake and transport systems; 463 loci (40.1 %) coded for enzymatic properties, 99 of these (21.4 %) had reduction/oxidation functions; 117 (10.1 %) were gene regulation or sensory loci; 61 (5.3 %) encoded structural proteins found in the cell envelope or with enzymatic activities related to it, distinct from these, 46 (4.0 %) were involved in chemotaxis and flagellum, or pilus synthesis; 39 (3.4 %) were transposase enzymes or were bacteriophage-derived; and 30 (2.6 %) were involved in the production of antibiotics or siderophores. Two hundred and twenty genes (19.1 %) encoded hypothetical proteins or those of unknown function. Given the importance of motility and pilus formation in microcosm persistence the nature of the colonization of the rhizosphere was examined by confocal microscopy. Wild type B. thailandensis expressing red fluorescent protein was inoculated into microcosms. Even though the roots had been washed, the bacteria were still present but they were motile with no attachment having taken place, perhaps being retained in a biofilm

    Purification and Characterization of a Novel Chlorpyrifos Hydrolase from Cladosporium cladosporioides Hu-01

    Get PDF
    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg2+, Fe3+, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5–10% inhibition) were observed in the presence of Mn2+, Zn2+, Cu2+, Mg2+, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min−1, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus
    corecore