7 research outputs found
TIRR regulates 53BP1 by masking its histone methyl-lysine binding function
53BP1 is a multi-functional double-strand break (DSB) repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumors to PARP inhibitors. Central to all 53BP1 activities is its recruitment to DSBs via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, TIRR (Tudor Interacting Repair Regulator) that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, ATM phosphorylates 53BP1 and recruits RIF1 to dissociate the 53BP1–TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to DSBs. Depletion of TIRR destabilizes 53BP1 in the nuclear soluble fraction and also alters the DSB-induced protein complex centering 53BP1. These findings identify TIRR as a new factor that influences DSB repair utilizing a unique mechanism of masking the histone methyl-lysine binding function of 53BP1
Spatial comparison of molecular features associated with resistance to pembrolizumab in BCG unresponsive bladder cancer
Intravenous immune checkpoint inhibition achieves a 40% 3-month response in BCG-unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ. Yet, only half of the early responders will continue to be disease-free by 12 months, and resistance mechanisms are poorly defined. We performed spatial profiling of BCG-unresponsive tumors from patients responsive or resistant to intravenous pembrolizumab treatment, analyzing samples both before initiating and 3 months post-intravenous pembrolizumab treatment. We analyzed 119 regions of interest, which included 59 pairs of epithelial and adjacent stromal segments across five patients: two responders and three non-responders. We demonstrate that BCG unresponsive tumors with an inflamed PanCK+ tumor area and an infiltrated stromal segment respond better to intravenous pembrolizumab. Furthermore, using segment-specific gene signatures generated from a cohort of BCG unresponsive NMIBC treated with intravesical BCG+pembrolizumab, we find that non-inflamed, immune-cold tumors that do not respond to intravenous pembrolizumab exhibit a favorable outcome to the combined application of BCG and pembrolizumab. For the first time, we have identified molecular features of tumors associated with response and resistance to intravenous pembrolizumab in BCG unresponsive NMIBCs. Further research with more patients and alternative checkpoint inhibitors is essential to validate our findings. We anticipate that using a transcriptomics signature like the one described here can help identify tumors with a higher possibility of responding to intravenous pembrolizumab
Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas.
BRCA1/2-mutated ovarian cancers (OCs) are defective in homologous recombination repair (HRR) of double-strand breaks (DSBs) and thereby sensitive to platinum and PARP inhibitors (PARPis). Multiple PARPis have recently received US Food and Drug Administration (FDA) approval for treatment of OCs, and resistance to PARPis is a major clinical problem. Utilizing primary and recurrent BRCA1/2-mutated carcinomas from OC patients, patient-derived lines, and an in vivo BRCA2-mutated mouse model, we identified a microRNA, miR-493-5p, that induced platinum/PARPi resistance exclusively in BRCA2-mutated carcinomas. However, in contrast to the most prevalent resistance mechanisms in BRCA mutant carcinomas, miR-493-5p did not restore HRR. Expression of miR-493-5p in BRCA2-mutated/depleted cells reduced levels of nucleases and other factors involved in maintaining genomic stability. This resulted in relatively stable replication forks, diminished single-strand annealing of DSBs, and increased R-loop formation. We conclude that impact of miR-493-5p on multiple pathways pertinent to genome stability cumulatively causes PARPi/platinum resistance in BRCA2 mutant carcinomas
Recommended from our members
Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma
The long-term survival of patients with advanced urothelial carcinoma (UCa) is limited because of innate resistance to treatment. We identified elevated expression of the histone methyltransferase EZH2 as a hallmark of aggressive UCa and hypothesized that EZH2 inhibition, via a small-molecule catalytic inhibitor, might have antitumor effects in UCa. Here, in a carcinogen-induced mouse bladder cancer model, a reduction in tumor progression and an increase in immune infiltration upon EZH2 inhibition were observed. Treatment of mice with EZH2i causes an increase in MHC class II expression in the urothelium and can activate infiltrating T cells. Unexpectedly, we found that the lack of an intact adaptive immune system completely abolishes the antitumor effects induced by EZH2 catalytic inhibition. These findings show that immune evasion is the only important determinant for the efficacy of EZH2 catalytic inhibition treatment in a UCa model
Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer
High-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents (i.e., platinum and poly(ADP-ribose) polymerase inhibitors [PARPis]) due to an underlying defect in homologous recombination (HR). However, resistance to platinum and PARPis represents a significant barrier to the long-term survival of these patients. Although BRCA1/2-reversion mutations are a clinically validated resistance mechanism, they account for less than half of platinum-resistant BRCA1/2-mutated HGSOCs. We uncover a resistance mechanism by which a microRNA, miR-622, induces resistance to PARPis and platinum in BRCA1 mutant HGSOCs by targeting the Ku complex and restoring HR-mediated DSB repair. Physiologically, miR-622 inversely correlates with Ku expression during the cell cycle, suppressing non-homologous end-joining and facilitating HR-mediated DSB repair in S phase. Importantly, high expression of miR-622 in BRCA1-deficient HGSOCs is associated with worse outcome after platinum chemotherapy, indicating microRNA-mediated resistance through HR rescue
DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells
International audienc