5 research outputs found

    Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar

    No full text
    In the fermentation and bioenergy industry, terrestrial biomass is usually fractionated and the collected components, such as starch, are processed separately. Such a separation has not been reported for seaweeds. In this work, the direct hydrothermal processing of the whole green seaweed Ulva sp. biomass is compared to processing of separated starch and cellulose, to find the preferable route for monosaccharide, hydrochar, and polyhydroxyalkanoates (PHA) production. Glucose was the major released monosaccharide. A significant share of the glucose yield comes from the starch fraction. The highest hydrochar yield with the lowest ash content was obtained from the separated cellulose fraction. The highest PHA yield was obtained using a whole Ulva sp. hydrolysate fermentation with Haloferax mediterranei. Economic analysis shows the advantage of direct Ulva sp. biomass fermentation to PHA. The co-production of glucose and hydrochar does not add significant economic benefits to the process under plausible prices of the two outputs
    corecore